less retarded wiki

by drummyfish, generated on 05/15/24, available under CC0O 1.0 (public domain)

100r

Hundred Rabbits

These motherfuckers are toxic SJWs, avoid them like the devil. For now see xxiivv.

21st_century

21st Century

21st century, known as the Age Of Shit or Dark Ages, is already one of the worst centuries in history, despite
only being around for a short time. Hell on Earth, violence, pure stupidity, destruction, hatred and greed,
fascism, misery, torture and suffering -- these are just some words describing this time period of time. How
unlucky it is to have been born in such a shitty time. Abominations walk in the streets. In this century there
exists no more good, there is just evil opposed by another evil and people no longer even know what good
means, they only support one of the two evils, thinking it's the good; there are rare few who support some
kind of third evil that's not one of the two major evils, but all in all there is nothing but evil. While in the past
only a portion of population were slaves, under today's late stage capitalism the whole population has
already been enslaved. People are absurdly stupid, and everything is getting much worse by the year.

In 21st century there are already long established offices whose sole purpose is to ensure people cannot
make use of useful ideas (see patents). It is also possible -- and actually extremely common -- to draw a
rectangle on the ground and then buy a paper that makes it possible to bully anyone who enters that
rectangle, even kill him. Whole earth is now covered with such rectangles, it is impossible to set foot
anywhere else -- in fact if you want to live, you have to buy a paper that gives you your own rectangle where
you won't be bullied if you fall asleep, but you have to continuously pay for that paper, i.e. you are doomed
to slavery just by existing. In 21 century it is forbidden to shit or urinate if you have no money in your pocket,
without money you are OFFICIALLY supposed and expected to hold it until your bladder explodes and you die
in the street -- if you're in a big city and you want to shit, you cannot do it, you may only pay for someone to
let you take a shit in his house. Also in 21st century you cannot eat food that is next to you, that no one else
is eating and that will be thrown away, and that even if you're starving -- it is called theft and you will be
beaten for it, maybe even killed. In this century you can also no longer drink from rivers or lakes, they have
been poisoned so that you cannot drink at all if you don't have money in your pocket -- doing the same with
air is already work in progress, major cities already have borderline unbreathable air. Never ending torture is
part of everyday life: for example every day you are forced to stop sleeping very early and go perform
slavery that you hate deeply, the whole day you are continuously targeted with repeated brainwashing (ads,
news, social media, fear culture, industrial noise, ...) that equate psychological torture. There are many more
things like this but trying to recount them all would result in many thousands of billions of volumes of books.

3d_modeling

3D Modeling

The topic of 3D modeling will be part of article about 3D models.

3d_model

3D Model

In the world of computers (especially in computer graphics, but also in physics simulations, 3D printing etc.)
3D model is a representation of a three dimensional object, for example of a real life object such as a car,
tree or a dog, but also possibly something more abstract like a fractal or function plot surface. 3D models can

3D Model LRS Wiki 1/895

https://creativecommons.org/publicdomain/zero/1.0/

be displayed using various 3D rendering techniques and are used mostly to simulate real world on computers
(e.g. games), as real world is, as we know, three dimensional. 3D models can be created in several ways, e.g.
manually with 3D modeling software (such as Blender) by 3D artists, by 3D scanning real world objects, or

automatically by procedural generation.

There is a plethora of different 3D model types, the topic is very large when viewed in its whole scope
because 3D models can be used and represented in many ways (and everything is yet more complex by
dealing with different methods of 3D rendering) -- the mainstream "game" 3D models that most people
are used to seeing are polygonal (basically made of triangles) boundary-representation (recording only
surface, not volume) textured (with "pictures"” on their surface) 3D models, but be aware that many different
ways of representation are possible and in common use by the industry, for example various volume
representations, voxel models, point clouds, implicit surfaces, spline surfaces, constructive solid geometry,
wireframe etc. Models may also bear additional extra information and features, e.g. material, bone rigs for
animation, animation key frames, density information, LODs, even scripts and so on.

3D formats: situation here is not as simple as it is with images or audio, but there are a few formats that in
practice will suffice for most of your models. Firstly the most KISS one is (Wavefront) obj -- this is supported
by almost every 3D software, it's a text format that's easy to parse and it's even human readable and
editable; obj supports most things you will ever need like UV maps and normals, and you can hack it even for
a primitive keyframe animation. So if you can, use obj as your first choice. If you need something a little
more advanced, use COLLADA (.dae extension) -- this is a bit more bloated than obj as it's an XML, but it's
still human readable and has more features, for example skeletal animation, instancing, model hierarchy and
so on. Another noteworthy format is e.g. stl used a lot in 3D printing. For other than polygonal models you
may have to search a bit or just represent your model in some sane way, for example heightmap is naturally
saved as a grayscale image, voxel model may be saved in some dead simple text format and so on. Also be
always sure to distribute your model in universal format, i.e. don't just share Blender's project file or
anything like that, that's like sharing pictures in Photoshop format or sending someone a Word document,
only retards do that -- yes, you should also share the project file if possible, but it's more important to release
the model in a widely supported, future proof and non discriminating format.

Let's now take a closer look at a basic classification of 3D models (we only mention the important categories,
this is not an exhaustive list):

¢ by representation:

+ boundary representation: Captures only the object's boundary, i.e. its surface, so we really
end up with just a hollow "shell" of the object without any volume inside. This is mostly good
enough for programs such as games -- with opaque objects we only ever see their surface
anyway (with transparent objects we get into a bit of trouble but can still manage to "fake"
some convincing look).

0 smooth spline surfaces: Model the boundary with smooth mathematical function,
poplar are e.g. NURBS. This gives very nice models that even up close look completely
smooth. Disadvantage is that it's not so easy to render these models directly in real
time, so the models are typically converted to polygonal models during rendering
anyway, sometimes using things like adaptive subdivision to still keep the model as
smooth as possible.

¢ polygonal: The surface is represented with polygons such as triangles or quads that
are connected to each other by their edges. These models have sharp edges and to
look smooth have to make use of many polygons, but it turns out this representation is
convenient, they can be easily edited and most importantly quickly rendered in real
time, which is why most game 3D models use this representation. These models are
composed of three essential elements: vertices (points in space), edges (lines
connecting the vertices) and polygons (flat surfaces between the edges).

- trianqular: Polygonal models that only contain triangles (three sided polygons),
oftentimes automatically created from general polygonal models. Models are
normally automatically triangulated right before rendering because a GPU can
basically just draw triangles.

0...
+ volume representation: Explicitly provide information about the whole object's volume, i.e.
it is possible to tell if any point is inside the model or outside of it and additionally usually also
providing more information e.g. about density, material, index of refraction and so on. Such

3D Model LRS Wiki 2/895

models naturally allow more precise simulations, they may fit better into physics engines and
can also naturally be nicely rendered with raytracting and similar image order rendering
methods. For real time entertainment graphics this is mostly overkill and the model would
have to be converted to boundary representation anyway, so volumetric models are rather
used in science and engineering industry.

0 voxel: Analogy of 2D bitmap images extended to 3D, i.e. the model exists in a 3D grind
and is represented with small cubes called voxels (3D analog to 2D pixel). The model is
therefore rough with "staircases" -- this is very famously seen in the game Minecraft,
but is very common also e.g. in medical devices like MRI which scan human body as a
series of layers, each one captured essentially as a 2D image. Voxel models are
convenient for various dynamic simulations, cellular automata, procedural generation
and so on. Voxel models can be converted to other types of model, e.g. to polygonal
ones (see the Marching Cubes algorithm).

¢ constructive solid geometry (CSG): Represent the model as a tree (or a more
general hierarchical graph) of basic geometric shapes combined together with so called
boolean operations -- basically set operations like union, subtraction and so on. This is
widely used in CAD applications for variety of reasons, e.g. the models are quite precise
and smooth, easily parametrized, their description is similar to their physical
manufacturing by machines (e.g. "make a sphere, dig hole in it", ...) and so on.

¢ implicit surfaces, signed distance function: Describe the model by a distance
function, i.e. function f(x,y,z) which for any point in space says the distance to the
object's boundary, with this distance being negative inside the object. This has some
nice advanced use cases.

0 heightmaps: Typically used for modeling terrain, represent terrain height at each 2D
coordinate, normally with a grayscale bitmap image. Advantages include simplicity of
representation and the ability to edit the heightmap with image editing tools, among
disadvantages are limited resolution of the heightmap and inability to represent e.g.
overhangs.

0...

¢ point cloud: Captures only individual points, sometimes with additional attributes such as
color of each point, something akin its size, orientation and so on. This is typically what we get
as raw data from some 3D scanners (see photogrammetry). The advantage of point clouds is
simplicity, they can be relatively easily rendered (just by drawing points on the screen),
disadvantage is that the model has no surface and volume, there are "holes" in it: point cloud
therefore has to be very dense to really be useful and for that it can take a lot of storage
space. Point clouds may be converted to a more desirable format with special algorithms.

+ wireframe: Records only edges, again potentially with attributes like their color etc. Just as
with point clouds wireframe model has no surface or volume, but it at least has some
information about which points are interconnected. Nowadays wireframe is not so much used
as a model representation but rather as one of viewing modes.

¢ by features:

+ UV mapped: Having UV map, i.e. being ready to be textured.

¢ textured: Having one or more textures.

¢ rigged: Having bone rig set up for skeletal animation.

¢+ animated: Having predefined animation (e.qg. idle, running, attacking, ...).

+ with materials: Having one or more materials defined and assigned to parts of the model.
Materials define properties such as texture, metalicity, transparency and so on.

+ with smoothing groups: Having information important for correct shading (so that sharp edges
look sharp and smooth edges look smooth).

+ with subdivision weights: Having information that's important for correct automatic subdivision
(geometrical smoothing).

.

¢ by detail, resolution and fidelity:

+ low poly: Relatively low total count of polygons.

+ mid poly: Polygon count somewhere between low and high poly.
+ high poly: Relatively high total count of polygons.

.

¢ by artistic style:

3D Model

¢ realistic
¢ stylized

LRS Wiki 3/895

+ abstract
...
¢ by intended use:
+ real time: Made for real time graphic, i.e. optimized for speed.
+ offline: Made for offline rendering, optimized for detail and visual quality.
+ for animation: Made with animation in mind -- this requires extra effort on correct topology so
that the model deforms well.
...

Animation: the main approaches to animation are these (again, just the important ones, you may encounter
other ways too):

e model made of separate parts: Here we make a bigger model out of smaller models (i.e. body is
head plus torso plus arms plus legs etc.) and then animate the big model by transforming the small
models. This is very natural e.g. for animating machines, for example the wheels of a car, but
characters were animated this way too (see e.g. Morrowind). The advantage is that you don't need
any sophisticated subsystem for deforming models or anything, you just move models around (though
it's useful to at least have parenting of models so that you can attach models to stick together). But it
can look bad and there may be some ugliness like models intersecting etc.

keyframe morphing: The mostly sufficient KISS way based on having a few model "poses" and just
interpolating between them -- i.e. for example a running character may have 4 keyframes: legs
together, right leg in front, legs together, left leg in front; now to make smooth animation we just
gradually deform one keyframe into the next. Now let's stress that this is a single model, each
keyframe is just differently shaped, i.e. its vertices are at different positions, so the model is
animating by really being deformed into different shapes. This was used in old games like Quake, it
looks good and works well -- use it if you can.

skeletal animation: The mainstream, gigantically bloated way, used in practically all 3D games
since about 2005. Here we firstly make a skeleton for the model, i.e. an additional "model made of
sticks (so called bones)" and then we have to painstakingly rig (or skin) the model, i.e. we attach the
skeleton to the model (more technically assignh weights to the model's vertices so as to make them
deform correctly). Now we have basically a puppet we can move quite easily: if we move the arm
bone, the whole arm moves and so on. Now animations are still made with keyframes (i.e. making
poses in certain moments in time between which we interpolate), the advantage against morphing is
just that we don't have to manually reshape the model on the level of individual vertices, we only
manipulate the bones and the model deforms itself, so it's a bit more comfortable but this requires
firstly much more work and secondly there needs to be a hugely bloated skeletal system programmed
in (complex math, complex model format, skinning GUI, ...). Bones have more advantages, you can
e.g. make procedural animations, ragdoll physics, you can attach things like weapon to the bones
etc., but it's mostly not worth it. Even if you have a rigged skeletal model, you can still export its
animation in the simple keyframe morphing format so as to at least keep your engine simple. Though
skeletal animation was mostly intended for characters, nowadays it's just used for animating
everything (like book pages have their own bones etc.) because many engines don't even support
anything simpler.

Let us also briefly mention texturing, an important part of making traditional 3D models. In the common,
narrower sense texture is a 2D images that is stretched onto the model surface to give the model more
detail, just like we put wallpaper on a wall -- without textures our models have flat looking surfaces with just
a constant color (at best we may assign each polygon a different color, but that won't make for a very
realistic model). Putting texture on the model is called texture mapping -- you may also hear the term UV
mapping because texturing is essential about making what we call a UV map. This just means we assign
each model vertex 2D coordinates inside the texture; we traditionally call these two coordinates U and V,
hence the term UV mapping. UV coordinates are just coordinates within the texture image; they are not in
pixels but are typically normalized to a float in range <0,1> (i.e. 0.5 meaning middle of the image etc.) -- this
is so as to stay independent of the texture resolution (you can later swap the texture for a different
resolution one and it will still work). By assigning each vertex its UV texture coordinates we basically achieve
the "stretching”, i.e. we say which part of the texture will show on what's the character's face etc. (Advanced
note: if you want to allow "tears" in the texture, you have to assign UV coordinates per triangle, not per
vertex.) Now let's also mention a model can have multiple textures at once -- the most basic one (usually
called diffuse) specifies the surface color, but additional textures may be used for things like transparency,
normals (see normal mapping), displacement, material properties like metalicity and so on (see also PBR).

3D Model LRS Wiki 4/895

The model may even have multiple UV maps, the UV coordinates may be animated and so on and so forth.
Finally we'll also say that there exists 3D texturing that doesn't use images, 3D textures are mostly
procedurally generated, but this is beyond our scope now.

We may do many, many more things with 3D models, for example subdivide them (automatically break
polygons down into more polygons to smooth them out), apply boolean operations to them (see above),
sculpt them (make them from virtual clay), optimize them (reduce their polygon count, make better
topology, ...), apply various modifiers, 3D print them, make them out of paper (see origami) etcetc.

{ Holy crab, there is a lot to say about 3D models. ~drummyfish }

Example

Let's take a look at a simple polygonal 3D model. The following is a primitive, very low poly model of a house,
basically just a cube with roof:

In a computer it would firstly be represented by an array of vertices, e.qg.:

ONNNNNNNN
oo
WINNNNNNNN
' Vo T
ONNNNNNNN
—~ o~~~
HIOMMOO >

Along with triangles (specified as indices into the vertex array, here with letters):

ABC ACD (bottom)

AFB AEF (front wall)
BGC BFG (right wall)
CGH CHD (back wall)
DHE DEA (left wall)
EIF FIG GIH HIE (roof)

We see the model consists of 9 vertices and 14 triangles. Notice that the order in which we specify triangles
follows the rule that looking at the front side of the triangle its vertices are specified clockwise (or
counterclockwise, depending on chosen convention) -- sometimes this may not matter, but many 3D engines
perform so called backface culling, i.e. they only draw the front faces and there some faces would be
invisible from the outside if their winding was incorrect, so it's better to stick to the rule if possible.

The following is our house model in obj format -- notice how simple it is (you can copy paste this into a file
called house.obj and open it in Blender):

simple house model

3D Model LRS Wiki 5/895

<K << <K<K <K<K<K<K K<

vn

vn

>

—“h—h—h—h —h —h —h —h —h —h —h —=h —h —h 11 <

2.000000 -2.000000 -2.000000
2.000000 -2.000000 2.000000
-2.000000 -2.000000 2.000000
-1.999999 -2.000000 -2.000000
2.000001 2.000000 -2.000000
1.999999 2.000000 2.000000
-2.000001 2.000000 2.000000
-2.000000 2.000000 -2.000000
-2.000001 2.000000 2.000000
0.000000 3.000000 0.000000
1.0000 0.0000 0.0000
-0.0000 0.0000 1.0000
0.0000 -1.0000 0.0000
0.0000 0.0000 -1.0000
-1.0000 -0.0000 -0.0000
-0.0000 0.8944 0.4472
0.4472 0.8944 0.0000
0.0000 0.8944 -0.4472
-0.4472 0.8944 -0.0000

4
UVOoOWrRrOHRHWENORN -+
(o]

HHEOOFREOFR WO WU WU

(o]

WO OPRROOPL,UUNDDWONOO
=
(<]
(6]

(o]
—
(o]

And here is the same model again, now in collada format (it is an XML so it's much more verbose, again you

can copy

<?
<C

3D Model

paste this to a file house.dae and open it in Blender):

xml version="1.0" encoding="utf-8"7?>
OLLADA xmlns="http://www.collada.org/2005/11/COLLADASchema" version="1.4.1"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<!-- simple house model -->
<asset>

<contributor> <author>drummyfish</author> </contributor>

<unit name="meter" meter="1"/>

<up_axis>Z UP</up_axis>
</asset>
<library geometries>

<geometry id="house-mesh" name="house">

<mesh>
<source id="house-mesh-positions">
<float_array id="house-mesh-positions-array" count="30">

2 2 -2 2 -2 -2 -2 -2 -2 -2 2 -2
2 2 2 2 -2 2 -2 -2 2 -2 2 2
-2 -2 2 0 0 3

</float_array>
<technique common>
<accessor source="#house-mesh-positions-array" count="10" stride="3">
<param name="X" type="float"/>
<param name="Y" type="float"/>
<param name="Z" type="float"/>
</accessor>
</technique_common>
</source>
<vertices id="house-mesh-vertices">
<input semantic="POSITION" source="#house-mesh-positions"/>
</vertices>
<triangles material="Material-material" count="14">
<input semantic="VERTEX" source="#house-mesh-vertices" offset="0"/>
<p>

514 104 58 2 215 302 120 4 07

LRS Wiki

6/895

37606 738 328 859 5409 794 789
</p>
</triangles>
</mesh>
</geometry>
</library geometries>
<library visual scenes>
<visual scene id="Scene" name="Scene">
<node id="house" name="house" type="NODE">
<translate sid="location">0 0 O</translate>
<rotate sid="rotationz">0 0 1 O</rotate>
<rotate sid="rotationY">0 1 0 O</rotate>
<rotate sid="rotationX">1 0 0 O</rotate>
<scale sid="scale">1 1 1l</scale>
<instance geometry url="#house-mesh" name="house"/>
</node>
</visual scene>
</library visual scenes>
<scene> <instance_visual_scene url="#Scene"/> </scene>
</COLLADA>

TODO: other types of models, texturing etcetc.

3D Modeling: Learning It And Doing It Right
WORK IN PROGRESS

Do you want to start 3D modeling? Or do you already know a bit about it and just want some advice
to get better? Then let us share a few words of advice here.

Let us preface with mentioning the hacker chad way of making 3D models, i.e. the LRS way 3D models
should ideally be made. Remeber, you don't need any program to create 3D models, you don't have to
be a Blender whore, you can make 3D models perfectly fine without Blender or any similar program, and
even without computers. Sure, a certain kind of highly artistic, animated, very high poly models will be very
hard or impossible to make without an interactive tool like Blender, but you can still make very complex 3D
models, such as that of a whole city, without any fancy tools. Of course people were making statues and
similar kinds of "physical 3D models" for thousands of years -- sometimes it's actually simpler to make the
model by hand out of clay and later scan it into the computer, you can just make a physical wireframe
model, measure the positions of vertices, hand type them into a file and you have a perfectly valid 3d model
-- you may also easily make a polygonal model out of paper, BUT even virtual 3D models can simply be made
with pen and paper, it's just numbers, vertices and triangles, very manageable if you keep it simple and well
organized. You can directly write the models in text formats like obj or collada. First computer 3D models
were actually made by hand, just with pen and paper, because there were simply no computers fast enough
to even allow real time manipulation of 3D models; back then the modelers simply measured positions of
someone object's "key points" (vertices) in 3D space which can simply be done with tools like rulers and
strings, no need for complex 3D scanners (but if you have a digital camera, you have a quite advanced 3D
scanner already). They then fed the manually made models to the computer to visualize them, but again,
you don't even need a computer to draw a 3D model, in fact there is a whole area called descriptive
geometry that's all about drawing 3D models on paper and which was used by engineers before computers
came. Anyway, you don't have to go as far as avoiding computers of course -- if you have a programmable
computer, you already have the luxury which the first 3D artists didn't have, a whole new world opens up to
you, you can now make very complex 3D models just with your programming language of choice. Imagine
you want to make the said 3D model of a city just using the C programming language. You can first define
the terrain as heightmap simply as a 2D array of numbers, then you write a simple code that will iterate over
this array and converts it to the obj format (a very simple plain text 3D format, it will be like 20 lines of code)
-- now you have the basic terrain, you can render it with any tool that can load 3D models in obj format
(basically every 3D tool), AND you may of course write your own 3D visualizer, there is nothing difficult about
it, you don't even have to use perspective, just draw it in orthographic projection (again, that will be probably
like 20 lines of code). Now you may start adding houses to your terrain -- make a C array of vertices and
another array of triangle indices, manually make a simple 3D model of a house (a basic shape will have
fewer than 20 vertices, you can cut it out of paper to see what it will look like). That's your house geometry,
now just keep making instances of this house and placing them on the terrain, i.e. you make some kind of
struct that will keep the house transformation (its position, rotation and scale) and each such struct will

3D Model LRS Wiki 7/895

represent one house having the geometry you created (if you later improve the house model, all houses will
be updates like this). You don't have to worry about placing the houses vertically, their height will be
computed automatically so they sit right on the terrain. Now you can update your model exporter to take into
account the houses, it will output the obj model along with them and again, you can view this whole model in
any 3D software or with your own tools. You can continue by adding trees, roads, simple materials (maybe
just something like per triangle colors) and so on. This approach may actually even be superior for some
projects just as scripting is superior to many GUI programs, you can collaborate on this model just like you
can collaborate on any other text program, you can automatize things greatly, you'll be independent of
proprietary formats and platforms etcetc. This is how 3D models would ideally be made.

OK, back to the mainstream now. Nowadays as a FOSS user you will most likely do 3D modeling with Blender
-- we recommended it to start learning 3D modeling as it is powerful, free, gratis, has many tutorials etc. Do
NOT use anything proprietary no matter what anyone tells you! Once you know a bit about the art, you may
play around with alternative programs or approaches (such as writing programs that generate 3D models
etc.). However as a beginner just start with Blender, which is from now on in this article the software
we'll suppose you're using.

Start extremely simple and learn bottom-up, i.e. learn about fundamentals and low level concepts and
start with very simple models (e.g. simple untextured low-poly shape of a house, box with a roof), keep
creating more complex models by small steps. Do NOT fall into the trap of "quick and easy magic 3D
modeling" such as sculpting or some "smart apps" without knowing what's going on at the low level, you'll
end up creating extremely ugly, inefficient models in bad formats, like someone wanting to create space
rockets without learning anything about math or physics first. Remember to practice, practice, practice --
eventually you learn by doing, so try to make small projects and share your results on sites such as
opengameart to get feedback and some mental satisfaction and reward for your effort. The following is an
outline of possible steps you may take towards becoming an alright 3D artist:

1. Learn what 3D model actually is, basic technical details about how a computer represents
it and roughly how 3D rendering works. It is EXTREMELY important to have at least some idea
about the fundamentals, i.e. you should learn at least the following:

¢ 3D models that are used today consist of vertices and triangles (though higher polygons are
usually supported in modeling software, everything is broken down to triangles eventually),
computers usually store arrays of vertices and triangles as indices pointing to the array of vertices.
Triangles have facing (front and back side, determined by the order of its vertices). These 3D models
only represent the boundary (not the volume). All this is called the model's geometry.

* Normals are vectors "perpendicular to the surface", they can be explicitly modified and stored or
computed automatically and they are extremely important because they say how the model interacts
with light (they are used in shading of the model), i.e. which edges appear sharp or smooth. Normal
maps are textures that can be used to modify normals to make the surface seem rough or otherwise
deformed without actually modifying the geometry. You HAVE TO understand normals.

e Textures are images (or similar image-like data) that can be mapped to the model surface to "paint
it" (or give it other material properties). They are mapped to models by giving vertices texturing UV
coordinates. To make textures you'll need some basics of 2D image editing (see e.g. GIMP).

¢ 3D rendering (and also modeling) works with the concept of a scene in which a number of models
reside, as well as a virtual camera (or multiple ones), lights and other objects. These objects have
transformations (normally translation, rotation and scale, represented by matrices) and may form a
hierarchy, so called scene graph (some objects may be parents of other objects, meaning the child
transformations are relative to parents) etc.

¢ A 3D renderer will draw the triangles the model consists of by applying shading to determine color of
each pixel of the rasterized triangle. Shading takes into account besides others texture(s) of the
model, its material properties and light falling on the model (in which the model normals play a big
role). Shading can be modified by creating shaders (if you don't create custom shaders, some default
one will be used).

¢ Briefly learn about other concepts such as low/high poly modeling and basic 3D formats such as OB]
and COLLADA (which features they support etc.), possible other models representations (voxels, point
clouds, ...) etc.

2. Manually create a few extremely simple low-poly untextured models, e.g. that of a simple
house, laptop, hammer, bottle etc. Keep the vertex and triangle count very low (under 100), make the

3D Model LRS Wiki 8/895

model by MANUALLY creating every vertex and triangle and focus only on learning this low level
geometry manipulation well (how to create a vertex, how to split an edge, how to rotate a triangle,
...), making the model conform to good practice and get familiar with tools you're using, i.e. learn the
key binds, locking movement direction to principal axes, learn manipulating your 3D view, setting up
the free/side/front/top view with reference images etc. Make the model nice! I.e. make it have
correctly facing triangles (turn backface culling on to check this), avoid intersecting triangles,
unnecessary triangles and vertices, remove all duplicate vertices (don't have multiple vertices with
the same position), connect all that should be connected, avoid badly shaped triangles (e.g.
extremely acute/long ones) etc. Also learn about normals and make them nice! l.e. try automatic
normal generation (fiddle e.g. with angle thresholds for sharp/smooth edges), see how they affect the
model look, try manually marking some edges sharp, try out smoothing groups etc. Save your final
models in OBJ format (one of the simplest and most common formats supporting all you need at this
stage). All this will be a lot to learn, that's why you must not try to create a complex model at this
stage. You can keep yourself "motivated" e.g. by aiming for creating a low-poly model collection you
can share at opengameart or somewhere :)

3. Learn texturing -- just take the models you have and try to put a simple texture on them by drawing
a simple image, then unwrapping the UV coordinates and MANUALLY editing the UV map to fit on the
model. Again the goal is to get familiar with the tools and concepts now; experiment with helpers
such as unwrapping by "projecting from 3D view", using "smart" UV unwrap etc. Make the UV map
nice! Just as model geometry, UV maps also have good practice -- e.g. you should utilize as many
texture pixels as possible (otherwise you're wasting space in the image), watch out for color bleeding,
the mapping should have kind of "uniform pixel density" (or possibly increased density on triangles
where more details is supposed to be), some pixels of the texture may be mapped to multiple
triangles if possible (to efficiently utilize them) etc. Only make a simple diffuse texture (don't do PBR,
material textures etc., that's too advanced now). Try out texture painting and manual texture creation
in a 2D image program, get familiar with both.

4. Learn modifiers and advanced tools. Modifiers help you e.g. with the creation of symmetric
models: you only model one side and the other one gets mirrored. Subdivide modifier will
automatically create a higher poly version of your model (but you need to help it by telling it which
sides are sharp etc.). Boolean operations allow you to apply set operations like unification or
subtraction of shapes (but usually create a messy geometry you have to repair!). There are many
tools, experiment and learn about their pros and cons, try to incorporate them to your modeling.

5. Learn retopology and possibly sculpting. Topology is an extremely important concept -- it says
what the structure of triangles/polygons is, how they are distributed, how they are connected, which
curves their edges follow etc. Good topology has certain rules (e.g. ideally only being composed of
quads, being denser where the shape has more detail and sparser where it's flat, having edges so
that animation won't deform the model badly etc.). Topology is important for efficiency (you utilize
your polygon budget well), texturing and especially animation (nice deformation of the model).
Creating more complex models is almost always done in the following two steps:

¢ Creating the shape while ignoring topology, for example with sculpting (but also other techniques,
e.g. just throwing shapes together). The goal is to just make the desired shape.

¢ Retopology: creating a nice topology for the shape while keeping the shape unchanged. This is done
by starting modeling from the start with the "stick to surface" option, i.e. whenever you create or
move a vertex, it sticks to the nearest surface (surface of the created shape). Here you just try to
create a new "envelope" on the existing shape while focusing on making the envelope's topology
nice.

6. Learn about materials and shaders. At this point you may learn about how to create custom
shaders, how to create transparent materials, apply multiple textures, how to make realistic skin, PBR
shaders etc. You should at least be aware of basic shading concepts and commonly encountered
techniques such as Phong shading, subsurface scattering, screen space effects etc. because you'll
encounter them in shader editors and you should e.g. know what performance penalties to expect.

7. Learn animation. First learn about keyframes and interpolation and try to animate basic
transformations of a model, e.g. animate a car driving through a city by keyframing its position and
rotation. Then learn about animating the model's geometry -- first the simple, old way of morphing
between different shapes (shape keys in Blender). Finally learn the hardest type of animation: skeletal
animation. Learn about bones, armatures, rigging, inverse kinematics etc.

8. Now you can go crazy and learn all the uber features such as hair, physics simulation, NURBS
surfaces, boob physics etc.

3D Model LRS Wiki 9/895

Don't forget to stick to LRS principles! This is important so that your models are friendly to good
technology. l.e. even if "modern" desktops don't really care about polygon count anymore, still take the
effort to optimize your model so as to not use more polygons that necessary! Your models may potentially be
used on small, non-consumerist computers with software renderers and low amount of RAM. Low-poly is
better than high-poly (you can still prepare your model for automatic subdivision so that obtaining a higher
poly model from it automatically is possible). Don't use complex stuff such as PBR or skeletal animation
unless necessary -- you should mostly be able to get away with a simple diffuse texture and simple keyframe
morphing animation, just like in old games! If you do use complex stuff, make it optional (e.g. make a normal
map but don't rely on it being used in the end).

Good luck with your modeling!

3d_rendering

3D Rendering

See also 3D modeling.

In computer graphics 3D rendering is the process of computing images which represent a projected view of
3D objects through a virtual camera.

There are many methods and algorithms for doing so differing in many aspects such as computation
complexity, implementation complexity, realism of the result, representation of the 3D data, limitations of
viewing and so on. If you are just interested in the realtime 3D rendering used in gaymes nowadays, you are
probably interested in GPU-accelerated 3D rasterization with APls such as OpenGL and Vulkan.

LRS has a simple 3D rendering library called small3dlib.

Methods

As most existing 3D "frameworks" are harmful, a LRS programmer is likely to write his own 3D rendering
system that suits his program best, therefore we should list some common methods of achieving 3D. Besides
that, it's just pretty interesting to see what there is in the store.

A very important realization of a graphics programmer is that 3D rendering is to a great extent about
faking (especially the mainstream realtime 3D) -- it is an endeavor that seeks to produce something that
looks somehow familiar to HUMAN sight specifically and so even though the methods are mathematical, the
endeavor is really an art in the end, not dissimilar to that of a magician who searches for "smoke and
mirrors" hacks to produce illusions for the audience. Reality is infinitely complex, we use nothing else but
approximations and neglecting that rely on assumptions about human sight such as "60 FPS looks like
smooth movement to human eye", "infrared spectrum is invisible", "humans can't tell a mirror reflection is a
bit off", "inner corners are usually darker than flat surfaces", "no shadow is completely black because light
scatters in the atmosphere" etc. Really 3D graphics is nothing but searching for what looks good enough, and
deciding this relies on a SUBJECTIVE judgement of a human (and sometimes every individual). In theory -- if
we had infinitely powerful computers -- we would just program in a few lines of electromagnetic equations
and run the precise simulation of light propagating in 3D environment to produce an absolutely realistic
result, but though some methods try to come close to said approach, we simply won't ever have infinitely
powerful computers. For this we have to resort to a bit more ugly approach of identifying specific notable
real-life phenomena individually (for example caustics, Fresnel, mirror reflections, refractions, subsurface
scattering, metallicity, noise, motion blur and myriads of others) and addressing each one individually with
special treatment, many times correcting and masking our imperfections (e.g. applying antialiasing because
we dared to use a simplified model of light sampling, applying texture filtering because we dared to only use
finite amount of memory for our data, applying postprocessing etc.).

Rendering spectrum: The book Real-Time Rendering mentions that methods for 3D rendering can be seen
as lying on a spectrum, one extreme of which is appearance reproduction and the other physics simulation.
Methods closer to trying to imitate the appearance try to simply focus on imitating the look of an object on
the monitor that the actual 3D object would have in real life, without being concerned with how that look
arises in real life (i.e. closer to the "faking" approach mentioned above) -- these may e.g. use image data

3D Rendering LRS Wiki 10/895

such as photographs; these methods may rely on lightfields, photo textures etc. The physics simulation
methods try to replicate the behavior of light in real life -- their main goal is to solve the rendering
eguation, still only more or less approximately -- and so, through internally imitating the same processes,
come to similar visual results that arise in real world: these methods rely on creating 3D geometry (e.g. that
made of triangles or voxels), computing light reflections and global illumination. This is often easier to
program but more computationally demanding. Most methods lie somewhere in between these two
extremes: for example billboards and particle systems may use a texture to represent an object while at the
same time using 3D quads (very simple 3D models) to correctly deform the textures by perspective and
solve their visibility. The classic polygonal 3D models are also usually somewhere in between: the 3D
geometry and shading are trying to simulate the physics, but e.g. a photo texture mapped on such 3D model
is the opposite appearance-based approach (PBR further tries to shift the use of textures more towards the
physics simulation end).

With this said, let's now take a look at possible classifications of 3D rendering methods. As seen, there are
many ways:

¢ by order:

+ object order: The method iterates on objects and draws object by object, one after another.
This results in pixels being drawn to "random" places on the screen and possibly already
drawn pixels being overdrawn with new pixels (though this can be further reduced). Typically
requires a frame buffer and double buffering, often also z-buffer (or sorting), i.e. requires a lot
of memory. This method is also a bit ugly but typically also faster than the alternative, so it is
prevailing nowadays.

+ image order: The method iterates on screen pixels, typically going pixel by pixel from left to
right, top to bottom, deciding the color of each pixel independently. May be easier to program
and require less memory (no frame buffer is needed, see e.g. frameless rendering), however
though parallelism is applicable here (many pixels may potentially be independently computed
in parallel, speeding up rendering), the algorithms used (e.g. path tracing) often have to
expensively simulate light behavior and so performance is still an issue.

¢ by speed:

+ realtime: Able to render at interactive EPS, typically used in games etc.

+ offline: Spends a lot of time (even many minutes) on rendering each frame with the goal to
produce output of extreme quality, typically used to render 3D movies etc.

¢ by relative limitation:

¢ primitive/"pseudo3D"/2.5D/...: Older methods that produce 3D views but had great
limitations e.g. in camera degrees of freedom or possible environment geometry that was
usually limited to a "2D sector map" (see e.g. Doom).

¢ full/"true” 3D: The "new" way of 3D rendering that allows freely rotating camera, arbitrary 3D
geometry etc. Though this still has limitations (as any computer approximation of reality),
many people just call this the "true" 3D.

¢ by approach (sides of above mentioned rendering spectrum):

¢ appearance based: Focuses on achieving desired appearance by any means necessary,
faking, "cheating", not trying to stay physically correct. This is typically faster.

¢ physics simulation (see also physically based rendering): Focuses on simulating the
underlying physics of reality with high correctness so that we also get a very realistic result.

¢ by main method/algorithm (see also the table below):

¢ rasterization: Appearance based object order methods further based on a relatively simple
algorithm capable of drawing (rasterizing) a simple geometric shape (such as a triangle) which
we then use to draw the whole complex 3D scene (composed of great many of triangles).

¢ ray casting/tracing: Physics simulation image order methods further based on tracing paths
of light in a manner that's closer to reality.

...

¢ by 3D data (vector vs raster classification applies here just as in 2D graphics):

+ triangle meshes (vector, and other boundary representations)

+ voxels (raster, and potentially other volumetric representations)

+ point clouds

+ heightmaps

+ implicit surfaces
+ smooth surfaces (e.g. NURBS)

¢ 2D sectors (e.g. Doom's BSP "pseudo 3D" rendering)

3D Rendering LRS Wiki 11/895

...
¢ by hardware:

+ software rendering: Rendering only with CPU. This is typically slower as a CPU mostly
performs sequential computation, eliminating the possible parallelism optimization, however
the approach is more KISS and portable.

+ GPU accelerated: Making use of specialized graphics rendering hardware (GPU) that typically
uses heavy parallelism to immensely speed up rendering. While this is the mainstream,
extremely fast way of rendering, it is also greatly bloated while often being an overkill that
greatly complicates programming and makes programs less portable, less future proof etc.

¢ by realism of output:

+ photorealistic

¢ stylized, flat shaded, wireframe, ...

...

e hybrids: Methods may be combined and/or lie in between different extremes, for example we may
see a rasterizer 3D renderer that uses ray tracing to add detail (shadows, reflections, ...) to the scene,
we may see renderers that allow triangle meshes as well as voxels etc. { One nice hybrid looking
engine is e.g. Chasm: The Rift. ~drummyfish }

Finally a table of some common 3D rendering methods follows, including the most simple, most advanced
and some unconventional ones. Note that here we talk about methods and techniques rather than
algorithms, i.e. general approaches that are often modified and combined into a specific rendering algorithm.
For example the traditional triangle rasterization is sometimes combined with raytracing to add e.qg. realistic
reflections. The methods may also be further enriched with features such as texturing, antialiasing and so on.
The table below should help you choose the base 3D rendering method for your specific program.

The methods may be tagged with the following:

¢ 2.5D: primitive 3D, often called pseudo 3D or fake 3D, having significant limitations e.qg. in degrees of
freedom of the camera

¢ off: slow method usually used for offline (hon-realtime) rendering (even though they indeed may run
in real time e.g. with the help of powerful GPUs)

¢ /O vs OO: image order (rendering by pixels) vs object order (rendering by objects)

method notes
3D raycasting 10 off, shoots rays from camera
2D raycasting 10 2.5D, e.g. Wolf3D
Al image synthesis "just let Al magic do it"
beamtracing 10 off
billboarding (o]0
BSP rendering 2.5D, e.g. Doom
conetracing 10 off
"dungeon crawler" 00 2.5D, e.g. Eye of the Beholder
edge list, scanline, span rasterization 10, e.g. Quake 1
ellipsoid rasterization 00, e.g. Ecstatica
flat-shaded 1 point perspective OO0 2.5D, e.g. Skyroads
reverse raytracing (photon tracing) OO0 off, inefficient
image based rendering generally using images as 3D data
light fields image-based, similar to holography
mode 7 10 2.5D, e.q. F-Zero
parallax scrolling 2.5D, very primitive
pathtracing 10 off, Monte Carlo, high realism
portal rendering 2.5D, e.g. Duke3D
prerendered view angles 2.5D, e.q. Iridion Il (GBA)

3D Rendering LRS Wiki 12/895

method notes

raymarching 10 off, e.g. with SDFs

raytracing 10 off, recursive 3D raycasting
segmented road 00 2.5D, e.g. Outrun

shear warp rednering 10, volumetric

splatting OO0, rendering with 2D blobs
texture slicing 00, volumetric, layering textures
triangle rasterization OO0, traditional in GPUs

voxel space rendering 00 2.5D, e.g. Comanche
wireframe rendering 00, just lines

TODO: Rescue On Fractalus!

TODO: find out how build engine/slab6 voxel rendering worked and possibly add it here (from
http://advsys.net/ken/voxlap.htm seems to be based on raycasting)

TODO: VoxelQuest has some innovative voxel rendering, check it out
(https://www.voxelquest.com/news/how-does-voxel-quest-work-now-august-2015-update)

3D Rendering Basics For Nubs

If you're a complete noob and are asking what the essence of 3D is or just how to render simple 3Dish
pictures for your game without needing a PhD, here's the very basics. Yes, you can use some 3D engine such
as Godot that has all the 3D rendering preprogrammed, but you'll surrender to bloat, you won't really know
what's going on and your ability to tinker with the rendering or optimizing it will be basically zero... AND
you'll miss on all the fun :) So here we just foreshadow some concepts you should start with if you want to
program your own 3D rendering.

The absolute basic thing in 3D is probably perspective, or the concept which says that "things further away
look smaller". This is basically the number one thing you need to know and with which you can make simple

3D pictures, even though there are many more effects and concepts that "make pictures look 3D" and which
you can potentially study later (lighting, shadows, focus and blur, stereoscopy, parallax, visibility/obstruction
etc.). { It's probably possible to make something akin "3D" even without perspective, just with orthographic

projection, but that's just getting to details now. Let's just suppose we need perspective. ~drummyfish }

If you don't have rotating camera and other fancy things, perspective is actually mathematically very simple,
you basically just divide the object's size by its distance from the viewer, i.e. its Z coordinate (you
may divide by some multiple of Z coordinate, e.g. by 2 * Z to get different field of view) -- the further away it
is, the bigger number its size gets divided by so the smaller it becomes. This "dividing by distance"
ultimately applies to all distances, so in the end even the details on the object get scaled according to their
individual distance, but as a first approximation you may just consider scaling objects as a whole. Just keep
in mind you should only draw objects whose Z coordinate is above some threshold (usually called a near
plane) so that you don't divide by 0! With this "dividing by distance" trick you can make an extremely simple
"3Dish" renderer that just draws sprites on the screen and scales them according to the perspective rules
(e.g. some space simulator where the sprites are balls representing planets). There is one more thing you'll
need to handle: visibility, i.e. nearer objects have to cover the further away objects -- you can do this by
simply sorting the objects by distance and drawing them back-to-front (painter's algorithm).

Here is some "simple" C code that demonstrates perspective and draws a basic animated wireframe cuboid
as ASCIl in terminal:

#include <stdio.h>

#define SCREEN W 50 // ASCII screen width

#define SCREEN H 22 // ASCII screen height

#define LINE POINTS 64 // how many points for drawing a line
#define FOV 8 // affects "field of view"

#define FRAMES 30 // how many animation frames to draw

3D Rendering LRS Wiki 13/895

char screen[SCREEN W * SCREEN H];

void showScreen(void)

{

for (int y = 0; y < SCREEN H; ++y)

{

for (int x

= 0; X < SCREEN W; ++x)
putchar(screen[y * SCREEN W + x]);

putchar('\n');

}
}

void clearScreen(void)

{

for (int i

screen[i] = ' ';

}

// Draws point to 2D ASCII screen,

0; i < SCREEN W * SCREEN H; ++1i)

int drawPoint2D(int x, int y, char c)

{

X
y

SCREEN_
SCREEN_

W
H

/ 2+ X;
/ 2 +y;

[0,0] means center.

if (x >= 0 & x < SCREEN W && y >= 0 && y <= SCREEN H)
screen[y * SCREEN W + x] = c;

}

// Divides coord. by distance taking "FOV" into account => perspective.

int perspective(int coord, int distance)

{

return (FOV * coord) / distance;

}

void drawPoint3D(int x, int y, int z, char c)

{

if (z <= 0)

return; // at or beyond camera, don't draw

drawPoint2D(perspective(x,z),perspective(y,z),c);

}

int interpolate(int a, int b, int n)

{

return a + ((b - a) * n) / LINE POINTS;

}

void drawLine3D(int x1, int yl, int z1, int x2, int y2, int z2, char c)

{

for (int i

}

int main(void)

int shiftX,

#define N 12 // side length

[

#define

C

0; i < LINE_POINTS; ++i) // draw a few points to form a line
drawPoint3D(interpolate(x1,x2,i),interpolate(yl,y2,i),interpolate(z1,z2,1i),c);

shiftY, shiftz;

// cuboid points:

//

#define
#define
#define
#define
#define
#define
#define
#define

3D Rendering

X

PA -2 * N + shiftX,

PB
PC
PD
PE
PF
PG
PH

2
2

2
2

* N + shiftX,
* N + shiftX,
2 * N + shiftX,
2 * N + shiftX,
N + shiftX,
N + shiftX,
2 * N + shiftX,

*
*

shifty,
shifty,
shifty,
shifty,
-N + shifty,
-N + shifty,
-N + shifty,
-N + shifty,

Y
N
N
N
N

+ + + 4+

shiftz
shiftz
N + shiftz
N + shiftz
shiftz
shiftz
N + shiftz
N + shiftz

NNZ22NMNNZ2Z2N
¥ ¥+ + ¥ ¥+ +

LRS Wiki

14/895

for (int i = 0; i < FRAMES; ++i) // render animation

{

clearScreen();

shiftX = -N + (i * 4 * N) / FRAMES; // animate
shiftY = -N / 3 + (i * N) / FRAMES;

shiftZ = 0;

// bottom:

drawLine3D(PA,PB,C); drawLine3D(PB,PC,C); drawLine3D(PC,PD,C); drawLine3D(PD,PA,C);

// top:
drawLine3D(PE,PF,C); drawLine3D(PF,PG,C); drawLine3D(PG,PH,C); drawLine3D(PH,PE,C);

// sides:
drawLine3D(PA,PE,C); drawLine3D(PB,PF,C); drawLine3D(PC,PG,C); drawLine3D(PD,PH,C);

drawPoint3D(PA, 'A'); drawPoint3D(PB, 'B');
drawPoint3D(PC,'C'); drawPoint3D(PD,'D"');
drawPoint3D(PE, 'E'); drawPoint3D(PF,'F');
drawPoint3D (PG, 'G'); drawPoint3D(PH, 'H');

// corners

showScreen() ;
puts("press key to animate");

getchar();
}

return 0;

}

One frame of the animation should look like this:

ko sk ok sk sk skok koo koksk sk sk sk ok ok kokskokosk sk kok ok

* ok * %ok *
* oxk * %k *
* H ok ok ok ok ok ok sk sk skok ok okok (3 *
* * * *
* * * *
* * * *
* * * *
* * * *
* * * *
* D ¥k ko koK skokok ok sk okok *
* oxk * %k *
* % * *
* ok *% *
* %k * ok ok

KR KOk ok ok ok Kok ok oKk ok oKk Ok ok ko Kok K B
press key to animate

PRO TIP: It also help if you learn a bit about photography because 3D usually tries to simulate cameras and
3D programmers adopt many terms and concepts from photography. At least learn the very basics such as
focal length, pinhole camera, the "exposure triangle" (shutter speed, aperture, ISO) etc. You should know
how focal length is related to FQV, what the "f number" means, how to use exposure settings to increase or
decrease things like motion blur and depth of field, what HDR means etc.

Mainstream Realtime 3D

You may have come here just to learn about the typical realtime 3D rendering used in today's games
because aside from research and niche areas this kind of 3D is what we normally deal with in practice. This is
what this section is about.

These days "game 3D" means a GPU accelerated 3D rasterization done with rendering APIs such as OpenGL,
Vulkan, Direct3D or Metal (the last two being proprietary and therefore shit) and higher level engines above
them, e.g. Godot, OpenSceneGraph etc. The methods seem to be evolving to some kind of
rasterization/pathtracing hybrid, but rasterization is still the basis.

3D Rendering LRS Wiki 15/895

This mainstream rendering uses an object order approach (it blits 3D objects onto the screen rather than
determining each pixel's color separately) and works on the principle of triangle rasterization, i.e. 3D
models are composed of triangles (or higher polygons which are however eventually broken down into
triangles) and these triangles are projected onto the screen according to the position of the virtual camera
and laws of perspective. Projecting the triangles means finding the 2D screen coordinates of each of the
triangle's three vertices -- once we have thee coordinates, we draw (rasterize) the triangle to the screen just
as a "normal" 2D triangle (well, with some asterisks).

Additionally things such as z-buffering (for determining correct overlap of triangles) and double buffering are
used, which makes this approach very memory (RAM/VRAM) expensive -- of course mainstream computers
have more than enough memory but smaller computers (e.g. embedded) may suffer and be unable to handle
this kind of rendering. Thankfully it is possible to adapt and imitate this kind of rendering even on "small"
computers -- even those that don't have a GPU, i.e. with pure software rendering. For this we e.g. replace

z-buffering with painter's algorithm (triangle sorting), drop features like perspective correction, MIP mapping
etc. (of course quality of the output will go down).

Also additionally there's a lot of bloat added in such as complex screen space shaders, pathtracing (popularly

known as raytracing), megatexturing, shadow rendering, postprocessing, compute shaders etc. This may
make it difficult to get into "modern" 3D rendering. Remember to keep it simple.

On PCs the whole rendering process is hardware-accelerated with a GPU (graphics card). GPU is a special
hardware capable of performing many operations in parallel (as opposed to a CPU which mostly computes
sequentially with low level of parallelism) -- this is ideal for graphics because we can for example perform
mapping and drawing of many triangles at once, greatly increasing the speed of rendering (EPS). However
this hugely increases the complexity of the whole rendering system, we have to have a special APl and
drivers for communication with the GPU and we have to upload data (3D models, textures, ...) to the GPU
before we want to render them. Debugging gets a lot more difficult. So again, this is bloat, consider avoiding
GPUs.

GPUs nowadays are no longer just focusing on graphics, but are kind of a general device that can be used for
more than just 3D rendering (e.g. crypto mining, training Al etc.) and can no longer even perform 3D
rendering completely by themselves -- for this they have to be programmed. l.e. if we want to use a GPU for
rendering, not only do we need a GPU but also some extra code. This code is provided by "systems" such as
OpenGL or Vulkan which consist of an API (an interface we use from a programming language) and the
underlying implementation in a form of a driver (e.g. Mesa3D). Any such rendering system has its own
architecture and details of how it works, so we have to study it a bit if we want to use it.

The important part of a system such as OpenGL is its rendering pipeline. Pipeline is the "path" through
which data go through the rendering process. Each rendering system and even potentially each of its version
may have a slightly different pipeline (but generally all mainstream pipelines somehow achieve rasterizing
triangles, the difference is in details of how they achieve it). The pipeline consists of stages that follow one
after another (e.g. the mentioned mapping of vertices and drawing of triangles constitute separate stages). A
very important fact is that some (not all) of these stages are programmable with so called shaders. A shader
is a program written in a special language (e.g. GLSL for OpenGL) running on the GPU that processes the
data in some stage of the pipeline (therefore we distinguish different types of shaders based on at which part
of the pipeline they reside). In early GPUs stages were not programmable but they became so as to give a
greater flexibility -- shaders allow us to implement all kinds of effects that would otherwise be impossible.

Let's see what a typical pipeline might look like, similarly to something we might see e.g. in OpenGL. We
normally simulate such a pipeline also in software renderers. Note that the details such as the coordinate
system handedness and presence, order, naming or programmability of different stages will differ in any
particular pipeline, this is just one possible scenario:

1. Vertex data (e.g. 3D model space coordinates of triangle vertices of a 3D model) are taken from a
vertex buffer (a GPU memory to which the data have been uploaded).

2. Stage: vertex shader: Each vertex is processed with a vertex shader, i.e. one vertex goes into the
shader and one vertex (processed) goes out. Here the shader typically maps the vertex 3D
coordinates to the screen 2D coordinates (or normalized device coordinates) by:

3D Rendering LRS Wiki 16/895

e multiplying the vertex by a model matrix (transforms from model space to world space, i.e. applies
the model move/rotate/scale operations)

e multiplying by view matrix (transforms from world space to camera space, i.e. takes into account
camera position and rotation)

e multiplying by projection matrix (applies perspective, transforms from camera space to screen space
in homogeneous coordinates)

3. Possible optional stages that follow are tessellation and geometry processing (tessellation shaders
and geometry shader). These offer possibility of advanced vertex processing (e.g. generation of extra
vertices which vertex shaders are unable to do).

4. Stage: vertex post processing: Usually not programmable (no shaders here). Here the GPU does
things such as clipping (handling vertices outside the screen space), primitive assembly and
perspective divide (transforming from [homogeneous coordinates](homogeneous coordinates.md) to
traditional cartesian coordinates).

5. Stage: rasterization: Usually not programmable, the GPU here turns triangles into actual pixels (or
fragments), possibly applying backface culling, perspective correction and things like stencil test and
depth test (even though if fragment shaders are allowed to modify depth, this may be postpones to
later).

6. Stage: pixel/fragment processing: Each pixel (fragment) produced by rasterization is processed
here by a pixel/fragment shader. The shader is passed the pixel/fragment along with its coordinates,
depth and possibly other attributes, and outputs a processed pixel/fragment with a specific color.
Typically here we perform shading and texturing (pixel/fragment shaders can access texture data
which are again stored in texture buffers on the GPU).

7. Now the pixels are written to the output buffer which will be shown on screen. This can potentially be
preceded by other operations such as depth tests, as mentioned above.

TODO: example of specific data going through the pipeline

See Also

¢ 3d modelin
e software rendering
e autostereogram

42

42

"HAHAHAHAHAHAHAHAHAHHHHAAA BAZINGA" --Sheldon fan

42 is an even integer with prime factorization of 2 * 3 * 7. This number was made kind of famous (and later
overused in pop culture to the point of completely destroying the joke) by Douglas Adams' book The
Hitchhiker's Guide to the Galaxy in which it appears as the answer to the ultimate question of life, the
Universe and everything (the point of the joke was that this number was the ultimate answer computed by a
giant supercomputer over millions of years, but it was ultimately useless as no one knew the question to
which this number was the answer).

If you make a 42 reference in front of a TBBT fan, he will shit himself.

See Also

¢ bazinga

e thrembo

¢ foo (similarly overplayed "joke")
*69

4chan

42 LRS Wiki 17/895

4chan

{ haha https://lolwut.info/comp/4chan/4chan-g.htm| ~drummyfish }

4chan (https://4chan.org/, also 4cuck) is the most famous image board, a website causing controversies by
its low censorship and a place of great fun, trolling, toxicity and memes. It was started in 2003 by moot
(Christopher Poole, born 1988). As most image boards, 4chan has a nice, oldschool minimalist look, even
though it contains shitty captchas for posting and the site's code is proprietary. The site tolerates a great
amount of free speech up to the point of being regularly labeled "right-wing extremist site", though it
actually censors a lot of stuff and bans for stupid reasons such as harmless pedo jokes are very common
(speaking from experience) -- 4chan global rules for example PROHIBIT CRITICISING 4chan (LMAO, rule no.
8), doxxing and call for raids. Being a "rightist paradise" it is commonly seen as a rival to reddit, aka the
pseudoleftist paradise -- both forums hate each other to death. The discussion style is pretty nice, there are
many nice stories and memes (e.g. the famous greentexts) coming from 4chan but it can also be a hugely
depressing place just due to the shear number of retards with incorrect opinions.

Just as reddit consists of subcommunities known as subreddits, 4chan consists of different boards (just as
other image boards), each with given discussion topic and rules. The most (in)famous boards are likely
politically incorrect AKA /pol/, where most of the american school shooters hang around, and random AKA /b/,
the most active board, which is just a shitton of meme shitposting, porn, toxicity, fun, trolling and
retardedness.

For us the most important part of 4chan is the technology board known as /g/ (for technoloGEE). Browsing /g/
can bring all kinds of emotion, it's a place of relative freedom and somewhat beautiful chaos where all people
from absolute retards to geniuses argue about important and unimportant things, brands, tech news and
memes, and constantly advise each other to kill themselves. Sometimes the place is pretty toxic and not
good for mental health, actually it is more of a rule than an exception.

UPDATE: As of 2022 /g/ became literally unreadable, ABANDON SHIP. The board became flooded with
capitalists, cryptofascists, proprietary shills, productivity freaks and other uber retards, it's really not worth
reading anymore. You can still read good old threads on archives such as
https://desuarchive.org/g/page/280004/. ALSO 2024 update: 4chan is also completely unusable now because
it's cuckflared and posting requires unsolvable captchas (they are actually unsolvable, you must have PAID
account to bypass it, so to post you now de facto have to pay). Lurking on some other more relaxed boards
such as /x and /vr may still be cool, but in general accept that the site is dead, find something else.

Despite dwelling slightly underground -- maybe better said being isolated from the normie "safespace"
censornet -- 4chan has really been very notably significant for the whole Internet culture, long books could
be written about its history, culture, unique, intricate social mechanism of its ways of communication and
impact on the rest of the cyberspace; the "4chan experience" is one of the things that can't faithfully be
described by words, it has to be lived. Just like reddit mixed some interesting concepts into a unique, yet
more powerful combination that's more than a sum of its ingredients, so did 4chan -- yes, other boards are to
be credited for this too, but 4chan is the flagship, the center of it all. Especially important seems to be the
anonymity aspect, you never know who you are talking to, it's never clear if someone is trolling, serious,
shilling, extremely dumb or something in between. There is no karma, no handles, no profile pictures, no
upvotes (at best there are numbers of replies), no post history, no account age, you have to rely on judging
people by unusual attributes, for example by the style of their talk, their knowledge of the lore and latest
memes, by how they format their posts (e.g. the infamously hated empty lines), what images they attach
(and what they're file names are), as these are the only clues. A thread on 4chan isn't something with a clear
goal, you don't know if someone is asking a question because he wants a genuine answer or because he's
just bored and wants to see funny answers, or if he's posting a bait and is trying to trigger others, so each
discussion is a bit of a game, you're trying to guess what's going on. A famous post, for example, had itself
heard that the poster despises translations of books and always reads any book in its original language
despite not understanding a word of it, and that he already read works such as Don Quixote and Les
Miserables in their respective languages without knowing what they were about -- this stupidity combined
with extreme determination and dedication captures part of what makes 4chan what it is. Also everything is
temporary, every thread and image is deleted in a short time, which is an important factor too, everything is
constantly in motion, people have to react quickly, there is no turning back, reactions are quick and genuine,
if you miss something it's gone. Also the image memes themselves show how art (who cares if low) evolves if

4chan LRS Wiki 18/895

completely unrestrained, anyone can try to spawn a new meme or download anyone else's posted meme,
repost it or modify it, copyright mostly de facto won't apply as the authors are unknown; bad works are
filtered out while good ones remain simply by making others save them and keep reposting them, it's art
without authors, separated from the people, evolving completely on its own, purely by its intrinsic attributes,
unconstrained evolution at work right before our eyes -- this is a seriously scientifically interesting stuff.

Alternatives to 4chan: just check out other image boards like 8kun, anon.cafe, leftychan.net, wizardchan,
soyjak.party, BAIl, 1436¢chan (gopher) etc. Also check out other types of forums than image boards such as
saidit.net, voat or encyclopedia dramatica forums. You won't have much success searching for these using

Goolag.

{ Also check out https://wiki.soyjaks.party, it's a great place, CCO, tons of 4chan lore, kinda like encyclopedia
dramatica 2. ~drummyfish }

See Also

¢ Encyclopedia Dramatica
e reddit

e 8kun

e bienvenido a internet

e something awful

e rare Pepe

aaron_swartz

Aaron Swartz

"I think all censorship should be deplored." --Aaron Swartz

Aaron Swartz (1986 - 2013) was an American jewish prodigy that did a lot of activism and played a big role in
creation of Reddit (back then a big platform for free speech, nowadays hugely censored), RSS, Creative
Commons, Markdown and other quite important things. His life story is quite sad as he killed himself by
hanging at a young age (there are some conspiracy theories around it), people see this loss as even more
tragic because he was so talented and could have done many great things. But don't be mistaken, he was
also an American and an "entrepreneur", so a capitalist at least to some degree; do not follow people,
appreciate their art and their ideas.

abstraction

Abstraction

Abstraction is an important concept in programming, mathematics and other fields of science, philosophy
and art, which in simple words can be described as "viewing an issue from a distance", thinking in
higher-level concepts, i.e. paying less attention to fine detail so that one can see the bigger picture. In
programming for example we distinguish programming languages of high and low level of abstraction,
depending on how close they are "to the hardware" (e.g. assembly being low level, JavaScript being high
level); in art high abstraction means portraying and capturing things such as ideas, feelings and emotions
with shapes that may seem "distant", not resembling anything concrete or familiar. We usually talk about
different levels of abstraction, depending on the "distance" we take in vieweing the issue at hand -- this
concept may very well be demonstrated on sciences: particle physics researches the world at the lowest
level of abstraction, in extreme close-up, for example by examining individual atoms that make up our
brains, while biology resides at a higher level of abstraction, viewing the brain at the level of individual cells,
and finally psychology shows a very high level of abstraction because it looks at the brain from great
distance and just studies its behavior.

In mainstream programming education it is generally taught to "abstract as much as possible" because that's

aligned with the capitalist way of technology -- high abstraction is easy to handle for incompetent
programming monkeys, it helps preventing them from making damage by employing billions of safety

Abstraction LRS Wiki 19/895

mechanisms, it also perpetuates the cult of never stopping layering of the abstraction sandwich, creating
bloat, hype, bullshit jobs, it makes computers slower, constantly outdated and so drives software
consumerism. As with everything in capitalism, new abstractions are products hyped on grounds of
immediate benefit: creating more comfort, being something new and "modern", increasing "productivity",
lowering "barriers of entry" so that ANYONE CAN NOW BE A PROGRAMMER without even knowing anything
about computers (try to imagine this e.g. in the field of medicine) etc. -- of course, long term negative effects
are completely ignored. This is extremely wrong. It is basically why technology has been on such a huge
downfall in the latest decades. Opposing this, LRS advocates to employ only as little abstraction as needed,
so as to support minimalism. Too much abstraction is bad. For example a widely used general purpose
programming language should basically only have as much abstraction as to allow portability, it should
definitely NOT succumb high abstraction such as object obsessed programming.

In a more detailed view abstraction is not one-dimensional, we may abstract in different directions ("look at
the issue from different angles"); for example functional, logic and object paradigms are different ways of
programming languages abstracting from the low level, each one in different way. So the matter of
abstracting is further complicated by trying to choose the right abstraction -- one kind of abstraction may
work well for certain kinds of problems (i.e. solving these problems will become simple when applying this
abstraction) but badly for other kinds of problems. The art of choosing right abstraction (model) is important
e.g. in designing computer simulations -- if we want so simulate e.g. human society, do we simulate
individual people in it or just societies as whole entities? Do we simulate wars as a simple dice roll or do we
let individual soldiers fight their own battles? Do we represent roads as actual surfaces on top of which cars
move according to laws of physics, or do we simplify to something like mathematical graph connecting cities
with mere abstract lines, or something in between like a cellular automaton maybe? Do we consider beings
living on a round planet, with possibilities like meteor impacts and space flights, or do we simply consider
people living on a flat 2D sheet of paper? Similar though has come to designing games (another kind of
simulation).

Let's take a look at a possible division of a computer to different levels of abstraction, from lowest to highest
(keep in mind it's also possible to define the individual levels differently):

¢ physics: Computer is a collection of atoms and subatomic particles such as electrons, operating with
terms such as energy, charge, spin or quantum effects.

e electronic circuit: Computer is an analog circuit in which electricity flows through wires and
electronic components, operating with terms such as voltage, current, transistor, resistor or electronic
interference.

¢ logic circuit: Computer is a binary digital circuit; this is abstracting electricity away, now we are only
considering two possible values carried by the wires: 1s and 0s. Operating with terms such as logic
gate, logic function, multiplexer or sequential circuit.

e machine code/assembly: Computer is a machine with a specific instruction architecture, executing
an algorithm encoded as simple binary instructions, such as "add two numbers" or "write a number to
memory", in a specific format that's different for different types of computers. Operating with terms
such as CPU cycle, opcode, register, memory or interrupt.

¢ low level portable language: Computer is a machine capable of performing algorithms written in a
structured language resembling human language and it's a machine that's essentially the same as
other computers, even of different types, i.e. all computers can understand the same language
(programs are portable), typically e.g. C. Operating with terms such as structured data type,
procedure, signed/unsigned type, memory management etc.

¢ high level language: Computer is a machine capable of performing algorithms while handling many
things (such as memory allocation or ensuring safety) automatically and dynamically (on-the-go) and
understanding more complex and abstract descriptions of problems, allowing for very fast and
comfortable programming in languages like Python or JavaScript. Operating with terms such as
objects, dictionaries, pure functions and polymorphism.

e very high level, artificial intelligence: Computer is a machine capable of simulating human
thinking and therefore able to lead a conversation with human, it can perform commands given in
natural language and even reason and create on its own. Operating with terms such as training, data
sets and ethics.

Abstraction LRS Wiki 20/895

See Also

¢ https://unixsheikh.com/articles/we-have-used-too-many-levels-of-abstractions-and-now-the-future-looks-ble

acronym

Acronym

Acronym is an abbreviation of a multiple word term by usually appending the starting letters of each word to
form a new word.

Here is a list of some acronyms:

¢ AA (anti aliasing)

¢ AC (alternating current, air conditioning)

¢ AD (anno domini)

¢ ACID (atomicity consistency isolation durability)
¢ ACK (acknowledgement)

e ADSL (asymmetric digital subscriber line)

e AF (as fuck)

e AFAIK (as far as | know)

¢ AJAX (asynchronous JavaScript and XML)

¢ AFK (away from keyboard)

¢ ALU (arithmetic logic unit)

e AM (amplitude modulation)

¢ ANCAP (anarcho capitalist)

¢ ANPAC (anarcho pacifist)

¢ ANSI (american national standards institute)

¢ AO (ambient occlusion)

¢ API (application programming interface)

¢ ARM (advanced RISC machines)

¢ ARPANET (advanced research projects agency network)
¢ ASAP (as soon as possible)

¢ ASCII (American standard code for information interchange)
¢ ASM (assembly)

e ATM (at the moment, automated teller machine)
¢ B (byte, bit)

e B4 (before)

¢ BAI (bienvenido a internet)

¢ BASH (bourne again shell)

¢ BASIC (beginner all purpose symbolic instruction code)
¢ BBC (big black cock)

¢ BBS (bulletin board system)

¢ BC (bytecode, before Christ)

¢ BCD (binary coded decimal)

e BDFL (benevolent dictator for life)

e BDSM (bondage domination sadism masochism)
® BE (brainfuck)

¢ BG (background, bad game)

* BGR (blue green red)

¢ BIOS (basic input/output system)

¢ BJ (blow job)

¢ BJT (bipolar junction transistor)

¢ BS (bullshit)

¢ BSD (Berkeley software distribution)

e BTFO (blown the fuck out)

¢ CAD (computer aided design)

¢ CAPTCHA (completely automated public Turing test to tell computers and humans apart)
¢ CC (creative commons, C compiler)

Acronym LRS Wiki 21/895

8

CCO (creative commons zero)

D (compact disc, change directory)

EO (chief executive officer)

| (computer generated imagery)

ISC (complex instruction set computer)
CLI (command line interface)

¢ CMOS (complementary metal oxide semiconductor)
e CMS (content management system)

¢ CMYK (cyan magenta yellow key)

e COMPSCI (computer science)

¢ CP (child porn, copy)

e CPU (central processing unit)

¢ CRC (cyclic redundancy check)

¢ CRT (cathode ray tube)

¢ CSG (constructive solid geometry)

¢ CSS (cascading style sheet)

¢ CSV (comma separated values)

¢ DAC (digital analog converter)

e DB (database)

¢ DC (direct current)

¢ DDOS (distributed denial of service)

¢ DDR (double data rate)

¢ DE (desktop environment)

¢ DHCP (dynamic host configuration protocol)
e DI (download)

e DMA (direct memory access)

e DMCA (digital millennium copyright act)

¢ DND (dungeons & dragons, do not disturb)
¢ DNS (domain name system)

e DOM (document object model)

¢ DOS (disk operating system, denial of service)
¢ DOTADIW (do one thing and do it well)

¢ DPI (dots per inch)

e DRAM (dynamic RAM)

e DRM (digital restrictions management)

¢ DRY (don't repeat yourself)

¢ DVD (digital versatile disc)

¢ ED (Enyclopedia Dramatica)

e EEPROM (electronically erasable programmable ROM)
e ELF (executable and linkable format)

e EMCAS (editor macros)

¢ ENIAC (electronic numerical integrator and computer)
* EOF (end of file)

e EOL (end of line, end of life)

¢ ERP (erotic role play)

¢ ESR (Erik Steven Raymond)

e EULA (end user license agreement)

* FAQ (frequently asked questions)

¢ FE (frontend)

o FET (field effect transistor)

* FES (for fuck's sake)

e FIFO (first in first out)

¢ FLAC (free lossless audio codec)

¢ FLOSS (free libre open source software)

e EM (frequency modulation)

e EML (fuck my life)

¢ FORTRAN (formula translation)

¢ FOSH (free and open source hardware)

¢ FOSS (free and open source software)

¢ FSF (free software foundation)

@]

@@
G

O

@]

Acronym LRS Wiki 22/895

¢ FP (floating point)

¢ FPGA (field programmable gate array)

¢ FPS (frames per second, first "person" shooter)
* FQA (frequently questioned answers)

¢ ES (file system)

¢ FTL (faster than light)

¢ ETP (file transfer protocol)

e FU (fuck you)

e EXAA (full screen anti aliasing)

¢ EYI (for your information)

¢ GB (gigabyte/gigabit, GameBoy)

¢ GBPS (GB per second)

¢ GCC (GNU compiler collection)

e GDB (GNU debugger)

¢ Gl (global illumination)

* GIB (gibibyte)

¢ GIF (graphics interchange format)

¢ GIGO (garbage in garbage out)

¢ GIMP (GNU image manipulation program)
¢ GLUT (OpenGL utility toolkit)

* GNAA (Gay Nigger Association of America)
* GNOME (GNU network object model environment)
* GNG (GNG's Not GNU)

e GNU (GNU's Not Unix)

¢ GOAT (greatest of all time)

¢ GPG (GNU privacy guard)

e GPGPU (general purpose GPU)

¢ GPL (GNU General Public License)

e GPLVv2 (GPL version 2)

e GPLVv3 (GPL version 3)

¢ GPS (global positioning system)

¢ GPU (graphics processing unit)

* GRUB (grand unified boot loader)

e GSM (global system for mobile communication)
e GTK+ (GIMP toolking)

e GUI (graphical user interface)

e H8 (hate)

e HD (high definition)

e HDD (hard disc drive)

e HDMI (HD multimedia interface)

e HW (hardware)

e HTML (hypertext markup language)

¢ HTTP (hypertext transfer protocol)

e HTTPS (HTTP secure)

e HURD (hird of unix replacing demons)

* HQ (high quality)

e HZ (hertz)

¢ IANA (internet assigned number authority)
¢ IANAL (I am not a lawyer)

¢ ICMP (internet control message protocol)
¢ IDC (I don't care)

¢ IDE (integrated development environment)
o |EEE (institute for electrical and electronic
¢ IM (instant messaging)

¢ IMAP (internet message access protocol)
¢ IMHO (in my honest opinion)

¢ IMO (in my opinion)

* INB4 (in before)

¢ 10 (input/output)

¢ |OT (internet of things)

Acronym LRS Wiki 23/895

¢ |PS (instructions per second)

¢ |P (internet protocol, intellectual property)

¢ |PVA4 (IP version 4)

¢ |PV6 (IP version 6)

¢ IRC (internet relay chat)

¢ IRL (in real life)

oS_ (instruction set architecture)
(international organization for standardization)
ISP (internet service provider)

g (international space station)
information system)

information technology)

2ME (java 2 micro edition)

JB (jailbait)

¢ JDK (java development kit)

¢ JIT (just in time)

¢ JK (just kidding)

¢ JPEG/JPG (joint photographic expert group)

¢ JS (JavaScript)

¢ JSON (JavaScript object notation)

e K&R (Kernighan and Ritchie)

e KB (kilobyte/kilobit)

e KBPS (KB per second)

¢ KDE (K desktop environment)

¢ KEK (@ meme version of LOL coming from World Of Warcraft)

e KHZ (kilohertz)

¢ KIB (kibibyte)

e KILL (keep it Linux loser)

¢ KISS (keep it simple stupid)

¢ KISP (keep it simple perfect)

* KLOC (kilo LOC)

o KKK (ku klux klan)

o KYS (kill yourself)

e LAMP (linux apache mysql php)

¢ LARP (live action role play)

* LAN (local area network)

¢ LCD (liquid crystal display)

¢ LED (light emitting diode)

¢ LER (light emitting resistor)

¢ L GBT (lesbian gay bisexual trans)

¢ LGBTQ (lesbian gay bisexual trans queer)

¢ LGPL (lesser GPL)

e LIFO (last in first out)

¢ LISP (list processing)

¢ LMAQO (laughing my ass off)

¢ LOC (lines of code)

¢ LOL (laughing out loud)

¢ LOQ (low quality)

¢ LRS (less retarded software/society)

¢ L SB (least significant bit)

o LUT (lookup table)

* MBR (master boot record)

e MHZ (megahertz)

e MIB (mebibyte)

e MIME (multipurpose internet mail extension)

e MIP (multum in parvo)

e MIPS (millions of instructions per second)

e MBPS (MB per second)

e MCU (microcontroller unit)

e MD (markdown)

ZREE|

o

1S
IT

—

Z

[]
[~

Acronym LRS Wiki 24/895

e MEW (my face when)

e MMO (massively multiplayer online)

e MMX (multimedia extension)

* MMORPG (MMO RPG)

* MOSFET (metal oxide semiconductor field effect transistor)
e MOTD (message of the day)

e MPEG (motion pictures experts group)

* MR (merge request)

e MS/M$ (Micro$oft)

e MSB (most significant bit)

e MSC (master of science)

e MSG (message)

e MUD (multi user dungeon)

* NAN (not a number)

* NASA (national aeronautic and space administration)
e NAT (network address translation)

¢ NC (non commercial)

¢ NEET (not in education, employment or training)
e NFT (non-fungible token)

e NGL (not gonna lie)

* NOP (no operation)

¢ NP (nondeterministic polynomial)

¢ NTES (NT file system)

e OEM (original equipment manufacturers)

* OGL (OpenGL)

e OMG (oh my god)

¢ OO (object oriented, object obsessed, object obfuscated)
* OOP (object oriented/obsessed programming)
¢ OS (operating system, open source)

¢ OSS (open source software)

¢ OSI (open source initiative)

e P2P (peer to peer)

¢ PB (petabyte, petabit, personal best)

¢ PBR (physically based rendering)

¢ PC (personal computer, political correctness)
¢ PD (public domain)

¢ PDF (portable document format)

e PCM (pulse code modulation)

¢ PGP (pretty good privacy)

e PHD (doctor of philosophy)

¢ PID (process ID)

¢ PIN (personal identification number)

* PNG (portable network graphics)

¢ POP3 (post office protocol version 3)

¢ POSIX (portable operating system interface)
e PPC (power PC)

¢ PR (pull request)

¢ PS (Photoshop, Postscript, PlayStation)

¢ PS2 (personal system 2)

¢ PTHC (preteen hardcore)

* QOS (quality of service)

¢ RAID (redundant array of inexpensive discs)
* RAM (random access memory)

* RC (release candidate)

¢ RCL (raycastlib)

e REGEX (regular expression)

¢ RFC (request for comments)

* RGB (red green blue)

* RGBA (red green blue alpha)

¢ RISC (reduced instruction set computer)

Acronym LRS Wiki 25/895

* RIP (rest in piece)

e RLE (run length encoding)

¢ RMS (Richard Matthew Stallman)

¢ RN (right now)

¢ ROFL (rolling on floor laughing)

¢ ROM (read-only memory)

¢ RPG (role playing game)

¢ RPI (Raspberry Pi)

* RT (real time)

¢ RTEM (read the fucking manual)

¢ RTOS (real time operating system)

¢ S3L (small3dlib)

e SAAS (software as a service)

e SAASS (service as a software substitute)
e SAF (smallabstractfish)

¢ SBC (single board computer)

* SCL (smallchesslib)

¢ SD (standard definition, secure digital)
¢ SDF (signed distance function)

¢ SDK (software development kit)

¢ SDL (simple directmedia layer)

¢ SED (smoke emitting diode)

¢ SEO (search engine optimization)

* SEX (sound effects)

e SGML (standard generalized markup language)
¢ SHA (secure hash algorithm)

¢ SIG (special interest group)

¢ SIM (subscriber identity module)

¢ SIMD (single instruction multiple data)
* SLOC (source lines of code)

¢ SMS (short message service)

e SMTP (simple mail transfer protocol)
¢ SNTP (simple network time protocol)
* SOC (system on a chip)

* SQL (structured query language)

e SRAM (static RAM)

¢ SSAQ (screen space ambient occlusion)
* SSD (solid state drive)

e SSH (secure shell)

e SSL (secure socket layer)

¢ STFU (shut the fuck up)

* SVG (scalable vector graphics)

e SW (software)

¢ TAS (tool assisted speedrun)

¢ TB (terabyte, terabit)

¢ TCC (tiny C compiler)

¢ TCP (transmission control protocol)

o TFET (thin filter transistor)

e TEFW (that face when)

e TLA (three letter acronym)

e TM (trademark, Turing machine)

* TOS (terms of service)

¢ ITY (teletype)

e TUI (text user interface)

¢ UBI (universal basic income)

e UDP (user datagram protocol)

e Ul (user interface)

e UML (unified modeling language)

e URI (uniform resource identifier)

e URL (uniform resource locator)

Acronym LRS Wiki 26/895

e USA (united states of america)

¢ USB (universal serial bus)

e UTC (coordinated universal time)

e UTF (unicode transformation format)

e UX (user experience)

¢ VCS (version control system)

* VOD (video on demand)

¢ VHS (video home system)

¢ VIM (vi improved)

* VEX (visual effects)

* VL AN (virtual LAN)

o VLIW (very long instruction word)

e VM (virtual machine)

¢ VPN (virtual private network)

¢ VPS (virtual private server)

* VRAM (video RAM)

* W3C (world wide web consortium)

* WAN (wide area network)

* WAP (wireless application protocol)

e WIFI (wireless fidelity)

* WOW (World Of Warcraft)

* WPA (WIFI protected access)

* WTFE (what the fuck)

* WTFEPL (do what the fuck you want to public license)
* WYSIWYG (what you see is what you get)
* WM (window manager)

* WWW (world wide web)

e XAML (extensible application markup language)
e XHTML (extensible HTML)

e XML (extensible markup language)

* YOLO (you only live once)

¢ ZOMG (when you want to write OMG but accidentally also hit Z)

See Also

¢ LRS dictionary

ai

Artificial Intelligence

Artificial intelligence (Al) is an area of computer science whose effort lies in making computers simulate
thinking of humans and possibly other biologically living beings. This may include making computers play
games such as chess, compose music, paint pictures, understand and processing audio, images and text on
high level of abstraction (e.g. translation between natural languages), making predictions about complex
systems such as stock market or weather or even exhibit a general human-like behavior. Even though
today's focus in Al is on machine learning and especially neural networks, there are many other usable
approaches and models such as "hand crafted" state tree searching algorithms that can simulate and even
outperform the behavior of humans in certain specialized areas.

There's a concern that's still a matter of discussion about the dangers of developing a powerful Al, as that
could possibly lead to a technological singularity in which a super intelligent Al might take control over the
whole world without humans being able to seize the control back. Even though it's still likely a far future and
many people say the danger is not real, the question seems to be about when rather than if.

By about 2020, "Al" has become a capitalist buzzword. They try to put machine learning into everything just
for that Al label -- and of course, for a bloat monopoly.

Artificial Intelligence LRS Wiki 27/895

By 2023 neural network Al has become extremely advanced in processing visual, textual and audio
information and is rapidly marching on. Networks such as stable diffusion are now able to generate images
(or modify existing ones) with results mostly indistinguishable from real photos just from a short plain
language textual description. Text to video Al is emerging and already giving nice results. Al is able to write
computer programs from plain language text description. Chatbots, especially the proprietary chatGPT, are
scarily human-like and can already carry on conversation mostly indistinguishable from real human
conversation while showing extraordinary knowledge and intelligence -- the chatbot can for example
correctly reason about advanced mathematical concepts on a level much higher above average human. Al
has become mainstream and is everywhere, normies are downloading "Al apps" on their phones that do
funny stuff with their images while spying on them. In games such as chess or even strategy video games
neural Al has already been for years far surpassing the best of humans by miles.

See Also

o artificial life

algorithm

Algorithm

Algorithm (from the name of Persian mathematician Muhammad ibn Musa al-Khwarizmi) is an exact
step-by-step description of how to solve some type of a problem. Algorithms are basically what programming
is all about: we tell computers, in very exact ways (with programming languages), how to solve problems --
we write algorithms. But algorithms don't have to be just computer programs, they are simply exact
instruction for solving problems. Although maybe not as obvious, mathematics is also a lot about creating
algorithms because it strives to give us exact instructions for solving problems -- a mathematical formula
usually tells us what we have to do to compute something, so in a way it is an algorithm too.

Cooking recipes are commonly given as an example of a non-computer algorithm, though they rarely contain
branching ("if condition holds then do...") and loops ("while a condition holds do ..."), the key features of
algorithms. The so called wall-follower is a simple algorithm to get out of any maze which doesn't have any
disconnected walls: you just pick either a left-hand or right-hand wall and then keep following it. You may
write a crazy algorithm basically for any kind of problem, e.g. for how to clean a room or how to get a girl to
bed, but it has to be precise so that anyone can execute the algorithm just by blindly following the steps; if
there is any ambiguity, it is not considered an algorithm; a vague, imprecise "hint" on how to find a solution
(e.g. "the airport is somewhere in this general direction.") we rather call a heuristic. Heuristics are useful too
and they may be utilized by an algorithm, e.g. to find a precise solution faster, but from programmer's point
of view algorithms, the PRECISE ways of finding solutions, are the basics of everything.

Interesting fact: contrary to intuition there are problems that are mathematically proven to be unsolvable by
any algorithm, see undecidability, but for most practically encountered problems we can write an algorithm
(though for some problems even our best algorithms can be unusably slow).

Algorithms are mostly (possibly not always, depending on exact definition of the term) written as a series of
steps (or "instructions"); these steps may be specific actions (such as adding two numbers or drawing a
pixel to the screen) or conditional jumps to other steps ("if condition X holds then jump to step N,
otherwise continue"). At the lowest level (machine code, assembly) computers cannot do anything more
complex than that: execute simple instructions (expressed as 1s and 0s) and perform conditional jumps -- in
this computers are quite dumb (their strength comes from being able to execute many instruction with
extreme speed). These jumps can be used to create branches (in programming known as if-then-else) and
loops. Branches and loops are together known as control structures -- they don't express a direct action but
control which steps in the algorithm will follow. All in all, any algorithm can be built just using these
three basic constructs:

e sequence: A series of steps, one after another. E.g. "write prompt, read number from input, multiply
it by two, store it to memory".

e selection (branches, if-then-else): Two branches (blocks of instructions) preceded by a condition; the
first branch is executed only if the condition holds, the second ("else") branch is executed only if the

Algorithm LRS Wiki 28/895

condition doesn't hold (e.g. "If user password is correct, log the user in, otherwise print out an error.").
The second branch is optional (it may remain empty).

e iteration (loops, repetition): Sequence of steps that's repeated as long as certain condition holds
(e.g. "As long as end of file is not reached, read and print out the next character from the file.").

Note: in a wider sense algorithms may be expressed in other (mathematically equivalent) ways than
sequences of steps (non-imperative ways, see declarative languages), even mathematical equations are
often called algorithms because they imply the steps towards solving a problem. But we'll stick to the
common narrow meaning of algorithm given above.

Additional constructs can be introduced to make programming more comfortable, e.g. subroutines/functions
(kind of small subprograms that the main program uses for solving the problem), macros (shorthand
commands that represent multiple commands) or switch statements (selection but with more than two
branches). Loops are also commonly divided into several types such as: counted loops, loops with condition
and the beginning, loops with condition at the end and infinite loops (for, while, do while and while (1) in
C, respectively) -- in theory there can only be one generic type of loop but for convenience programming
languages normally offer different "templates" for commonly used loops. Similarly to mathematical
equations, algorithms make use of variables, i.e. values which can change and which have a specific name
(such as x or myVariable).

Practical programming is based on expressing algorithms via text, but visual programming is also possible:
flowcharts are a way of visually expressing algorithms, you have probably seen some. Decision trees are
special cases of algorithms that have no loops, you have probably seen some too. Even though some
languages (mostly educational such as Snap) are visual and similar to flow charts, it is not practical to create
big algorithms in this way -- serious programs are written as a text in programming languages.

Example

Let's write a simple algorithm that counts the number of divisors of given number x and checks if the number
is prime along the way. (Note that we'll do it in a nhaive, educational way -- it can be done better). Let's start
by writing the steps in plain English (sometimes called pseudocode):

1. Read the number x from the input.

2. Set the divisor counter to 0.

3. Set currently checked number to 1.

4. While currently checked number is lower or equal than x:

e a: If currently checked number divides x, increase divisor counter by 1.
e b: Increase currently checked number.

5. Write out the divisor counter.
6. If divisor counter is equal to 2, write out the number is a prime.

Notice that x, divisor counter and currently checked number are variables. Step 4 is a loop (iteration) and
steps a and 6 are branches (selection). The flowchart of this algorithm is:

START

|
v

read Xx

|
v

set divisor count to O

|
v

set checked number to 1

checked number <= x ? ------ .

| |
| yes I

Algorithm LRS Wiki 29/895

Vv
checked number no
divides x ? ------- .

| |

I I

I I

| I |

I | yes I I

I v I I

| increase divisor | |

| count by 1 |

I | I I

| | I |

I [<--mmmmmmmm- ' I

I | I

| v |

| increase checked Vv

| number by 1 print divisor count
| | |
L 1 |

Vv no

divisor count

| yes

v

=27 -----

print "number is prime"

This algorithm would be written in Python as:

X = int(input("enter a number: "))
divisors = 0
for i in range(1l,x + 1):
if x % i == 0: # i divides x?
divisors = divisors + 1

print("divisors: " + str(divisors))

if divisors ==
print("It is a prime!")

in C as:

#include <stdio.h>

int main(void)

{
int x, divisors = 0;
scanf("%d",&x); // read a number
for (int i = 1; i <= x; ++i)
if (x % 1 ==0) // 1 divides x?
divisors = divisors + 1;
printf("number of divisors: %d\n",divisors);
if (divisors == 2)
puts("It is a prime!");
return 0;
}

<- "0" - # read X and convert to number
0 # divisor count

Algorithm

LRS Wiki

and in comun as (for simplicity only works for numbers up to 9):

30/895

1 # checked number

@@
$0 $3 > ? # checked num. > x ?

'@

$2 $1 % 0 = ? # checked num. divides x ?
$1 ++ $:2 # increase divisor count

++ # increase checked number

0 "divisors: --> # write divisor count
$1 IIGII + _> 10 _>

$1 2 =7
0 "It is a prime" --> 10 ->

This algorithm is however not very efficient and could be optimized -- for example there is no need to check
divisors higher than the square root of the checked value (mathematically above square root the only divisor
left is the number itself) so we could lower the number of the loop iterations and so make the algorithm finish
faster.

Study of Algorithms

Algorithms are the essence of computer science, there's a lot of theory and knowledge about them.

Turing machine, a kind of mathematical bare-minimum computer, created by Alan Turing, is the traditional
formal tool for studying algorithms, though many other models of computation exist. From theoretical
computer science we know not all problems are computable, i.e. there are problems unsolvable by any
algorithm (e.g. the halting problem). Computational complexity is a theoretical study of resource
consumption by algorithms, i.e. how fast and memory efficient algorithms are (see e.qg. P_vs NP).
Mathematical programming is concerned, besides others, with optimizing algorithms so that their time and/or
space complexity is as low as possible which gives rise to algorithm design methods such as dynamic
programming (practical optimization is a more pragmatic approach to making algorithms more efficient).
Formal verification is a field that tries to mathematically (and sometimes automatically) prove correctness of
algorithms (this is needed for critical software, e.g. in planes or medicine). Genetic programming and some
other methods of artificial intelligence try to automatically create algorithms (algorithms that create
algorithms). Quantum computing is concerned with creating new kinds of algorithms for quantum computers
(a new type of still-in-research computers). Programming language design is the art and science of creating
languages that express computer algorithms well.

Specific Algorithms
Following are some well known algorithms.

e graphics

+ DDA: line drawing algorithm

¢ discrete Fourier transform: extremely important algorithm expressing signals in terms of
frequencies

¢ Bresenham's algorithm: another line drawing algorithm

+ Midpoint algorithm: circle drawing algorithm

+ flood fill: algorithm for coloring continuous areas

¢ EXAA

+ Hough transform: finds shapes in pictures

¢ painter's algorithm

+ path tracing

¢ ray tracing
...

Algorithm LRS Wiki 31/895

+ Boot'h algorithm: algorithm for multiplication
¢ Dijkstra's algorithm
+ Euclidean algorithm: computes greatest common divisor
¢ humerical algorithms: approximate mathematical functions
¢ sieve of Eratosthenes: computes prime numbers
...
e sorting
+ bogosort (stupid sort)
+ bubble sort: simple, kind of slow but still usable sorting algorithm

¢ heap sort
¢ insertion sort

¢ merge sort
¢+ shaker sort
¢ selection sort
¢ slow sort
+ quick sort: one of the fastest sorting algorithms
...
¢ searching

¢ binary search
¢ linear search

e other

+ A*: path searching algorithm, used by Al in many games

+ backpropagation: training of neural networks

¢ fizzbuzz: problem/simple algorithm given in job interviews to filter out complete noobs

¢ FFT: quickly converts signal (audio, image, ...) to its representation in frequencies, one of the
most famous and important algorithms

+ Huffman coding: compression algorithm

+ Kalman filter

¢ k-means: clustering algorithm

¢ MD5: hash function

¢ backtracking

+ minimax plus alpha-beta pruning: used by many Als that play turn based games

+ proof of work algorithms: used by some cryptocurrencies

¢ RSA

¢ Shor's algorithm: guantum factorization algorithm

¢ YouTube algorithm: secret algorithm YouTube uses to suggest videos to viewers, a lot of
people hate it :)

...

See Also

e programming

¢ design pattern
e recursion

aliasing

Aliasing
See also antialiasing.

Aliasing is a certain typically undesirable phenomenon that distorts signals (such as sounds or images) when
they are sampled discretely (captured at single points, usually at periodic intervals) -- this can happen e.qg.
when capturing sound with digital recorders or when rendering computer graphics. There exist antialiasing
methods for suppressing or even eliminating aliasing. Aliasing can be often seen on small checkerboard
patterns as a moirA© pattern (spatial aliasing), or maybe more famously on rotating wheels or helicopter
rotor blades that in a video look like standing still or rotating the other way (temporal aliasing, caused by

Aliasing LRS Wiki 32/895

capturing images at intervals given by the camera's EPS).

A simple example showing how sampling at discrete points can quite dramatically alter the recorded result:

|- - -0+ - -0- - .| | 0 O .

| N/ 'l N/ | |
77I7.7I|I 1 1 I| I.lIII I T |

original image taking even columns taking odd columns

The following diagram shows the principle of aliasing with a mathematical function:

~ original sampling period
| | |<-mm e >
| | o _ |
| T S S
[/__1__\ / I\ / \| / __|___
| | \ / [\ / \ / \ |
(I R | [N
| I I I

| : :

\Y : :

| : : :

[---0---..._ : :

| | ttto... :

|| I ttth----0 -
| |

| o---
| reconstructed

|

v

The top signal is a sine function of a certain frequency. We are sampling this signal at periodic intervals
indicated by the vertical lines (this is how e.g. digital sound recorders record sounds from the real world).
Below we see that the samples we've taken make it seem as if the original signal was a sine wave of a much
lower frequency. It is in fact impossible to tell from the recorded samples what the original signal looked like.

Let's note that signals can also be two and more dimensional, e.g. images can be viewed as 2D signals.
These are of course affected by aliasing as well.

The explanation above shows why a helicopter's rotating blades look to stand still in a video whose EPS is
synchronized with the rotation -- at any moment the camera captures a frame (i.e. takes a sample), the
blades are in the same position as before, hence they appear to not be moving in the video.

Of course this doesn't only happen with perfect sine waves. Fourier transform shows that any signal can be
represented as a sum of different sine waves, so aliasing can appear anywhere.

Nyquist-Shannon sampling theorem says that aliasing can NOT appear if we sample with at least twice
as high frequency as that of the highest frequency in the sampled signal. This means that we can eliminate
aliasing by using a low pass filter before sampling which will eliminate any frequencies higher than the half of
our sampling frequency. This is why audio is normally sampled with the rate of 44100 Hz -- from such
samples it is possible to correctly reconstruct frequencies up to about 22000 Hz which is about the upper
limit of human hearing.

Aliasing is also a common problem in computer graphics. For example when rendering textured 3D models,
aliasing can appear in the texture if that texture is rendered at a smaller size than its resolution (when the
texture is enlarged by rendering, aliasing can't appear because enlargement decreases the frequency of the
sampled signal and the sampling theorem won't allow it to happen). (Actually if we don't address aliasing
somehow, having lower resolution textures can unironically have beneficial effects on the quality of
graphics.) This happens because texture samples are normally taken at single points that are computed by
the texturing algorithm. Imagine that the texture consists of high-frequency details such as small

Aliasing LRS Wiki 33/895

checkerboard patterns of black and white pixels; it may happen that when the texture is rendered at lower
resolution, the texturing algorithm chooses to render only the black pixels. Then when the model moves a
little bit it may happen the algorithm will only choose the white pixels to render. This will result in the model
blinking and alternating between being completely black and completely white (while it should rather be
rendered as gray).

The same thing may happen in ray tracing if we shoot a single sampling ray for each screen pixel. Note that
interpolation/filtering of textures won't fix texture aliasing. What can be used to reduce texture aliasing are
e.g. by mipmaps which store the texture along with its lower resolution versions -- during rendering a lower
resolution of the texture is chosen if the texture is rendered as a smaller size, so that the sampling theorem
is satisfied. However this is still not a silver bullet because the texture may e.g. be shrink in one direction but
enlarged in other dimension (this is addressed by anisotropic filtering). However even if we sufficiently
suppress aliasing in textures, aliasing can still appear in geometry. This can be reduced by multisampling,
e.g. sending multiple rays for each pixel and then averaging their results -- by this we increase our
sampling frequency and lower the probability of aliasing.

Why doesn't aliasing happen in our eyes and ears? Because our senses don't sample the world
discretely, i.e. in single points -- our senses integrate. E.g. a rod or a cone in our eyes doesn't just see exactly
one point in the world but rather an averaged light over a small area (which is ideally right next to another
small area seen by another cell, so there is no information to "hide" in between them), and it also doesn't
sample the world at specific moments like cameras do, its excitation by light falls off gradually which
averages the light over time, preventing temporal aliasing (instead of aliasing we get motion blur).

So all in all, how to prevent aliasing? As said above, we always try to satisfy the sampling theorem, i.e.
make our sampling frequency at least twice as high as the highest frequency in the signal we're sampling, or
at least get close to this situation and lower the probability of aliasing. This can be done by either increasing
sampling frequency (which can be done smart, some methods try to detect where sampling should be
denser), or by preprocessing the input signal with a low pass filter or otherwise ensure there won't be too
high frequencies (e.g. using lower resolution textures).

altruism

Altruism

Not to be confused with autism.

Altruism means striving for the wellbeing of others, actively performing selfless actions. It is a purely good
attitude which we, the LRS, fully embrace. It's no surprise that under capitalism, the rule of evil, altruism is
commonly met with hostility or, in the better case, with ridicule.

Rightists often make an extremely funny reasoning error (probably on purpose) to justify their own fascist
behavior; they claim that "altruism doesn't exist" because "altruism still seeks to satisfy one's ego and is
therefore self interest". Well, firstly this is either wrong, as selflessness isn't defined by obtaining no reward
but rather by acting in the interest of others without exploiting them, and secondly even if you define self
interest conveniently in a way that makes your claim technically correct, it still completely misses the point!
You can behave in a good or evil way, your definitions don't matter. No matter what words you use, you are
just trying to excuse fascist behavior in a situation when you can choose to not behave like a fascist --
imagine someone shooting a child and justifying it like "well, | had to do it because | wanted that child's
lollipop and | can't behave without self interest because | can't define selflessness".

anal_bead

Anal Bead

To most people anal beads are just sex toys they stick in their butts, however anal beads with with remotely
controlled vibration can also serve as a well hideen one-way communication device. Use of an anal bead for
cheating in chess has been the topic of a great cheat scandal in 2022 (Niemann vs Carlsen).

Anal Bead LRS Wiki 34/895

ahalog

Analog

Analog is the opposite of digital.

analytic_geometry

Analytic Geometry

Analytic geometry is part of mathematics that solves geometric problems with algebra; for example instead
of finding an intersection of a line and a circle with ruler and compass, analytic geometry finds the
intersection by solving an equation. In other words, instead of using pen and paper we use numbers. This is
very important in computing as computers of course just work with numbers and aren't normally capable of
drawing literal pictures and drawing results from them -- that would be laughable (or awesome?). Analytic
geometry finds use especially in such fields as physics simulations (collision detections) and computer
graphics, in methods such as raytracing where we need to compute intersections of rays with various
mathematically defined shapes in order to render 3D images. Of course the methods are used in other fields,
for example rocket science and many other physics areas. Analytic geometry reflects the fact that geometric
and algebraic problem are often analogous, i.e. it is also the case that many times problems we encounter in
arithmetic can be seen as geometric problems and vice versa (i.e. solving an equation is the same as e.g.
finding an intersection of some N-dimensional shapes).

Fun fact: approaches in the opposite direction also exist, i.e. solving mathematical problems physically rather
than by computation. For example back in the day when there weren't any computers to compute very
difficult integrals and computing them by hand would be immensely hard, people literally cut physical
function plots out of paper and weighted them in order to find the integral. Awesome oldschool hacking.

Anyway, how does it work? Typically we work in a 2D or 3D Euclidean space with Cartesian coordinates
(but of course we can generalize to more dimensions etc.). Here, geometric shapes can be described with
equations (or inequalities); for example a zero-centered circle in 2D with radius r has the equation x™~2 +
y~2 = r~2 (Pythagorean theorem). This means that the circle is a set of all points [x,y] such that when
substituted to the equation, the equation holds. Other shapes such as lines, planes, ellipses, parabolas have
similar equations. Now if we want to find intersections/unions/etc., we just solve systems of multiple
equations/inequalities and find solutions (coordinates) that satisfy all equations/inequalities at once. This
allows us to do basically anything we could do with pen and paper such as defining helper shapes and so on.
Using these tools we can compute things such as angles, distances, areas, collision points and much more.

Analytic geometry is closely related to linear algebra.

Examples
Nub example:

Find the intersection of two lines in 2D: one is a horizontal line with y position 2, the other is a 45 degree line
going through the [0,0] point in the positive x and positive y direction, like this:

The equation of line 1 is just y = 2 (it consists of all points [x,2] where for x we can plug in any number to get
a valid point on the line).

Analytic Geometry LRS Wiki 35/895

The equation of line 2 is x = y (all points that have the same x and y coordinate lie on this line).

We find the intersection by finding such point [x,y] that satisfies both equations. We can do this by plugging
the first equation, y = 2, to the second equation, x = y, to get the x coordinate of the intersection: x = 2. By
plugging this x coordinate to any of the two line equations we also get the y coordinate: 2. l.e. the
intersection lies at coordinates [2,2].

Advanced nub example:

Let's say we want to find, in 2D, where a line L intersects a circle C. L goes through points A = [-3,0.5] and B
= [3,2]. C has center at [0,0] and radius r = 2.

The equation for the circle Cis x™2 + y~2 =272, i.e. x~2 + y~2 = 4. This is derived from Pythagorean
theorem, you can either check that or, if lazy, just trust this. Equations for common shapes can be looked up.

One possible form of an equation of a 2D line is a "slope + offset" equation: y = k * x + q, where k is the
tangent (slope) of the line and q is an offset. To find the specific equation for our line L we need to first find
the numbers k and qg. This is done as follows.

The tangent (slope) kis (B.y - A.y) / (B.x - A.x). This is the definition of a tangent, see that if you don't
understand this. So forus k = (2 -0.5) /(3 - -3) = 0.25.

The number g (offset) is computed by simply substituting some point that lies on the line to the equation and
solving for q. We can substitute either A or B, it doesn't matter. Let's go with A: A.y = k * A.x + q, with
specific numbers this is 0.5 = 0.25 * -3 + g from which we derive that g = 1.25.

Now we have computed both k and q, so we now have equations for both of our shapes:

ecircleC: x™2+y"2=4
elinel:y=025*x+1.25

Feel free to check the equations, substitute a few points and plot them to see they really represent the
shapes (e.qg. if you substitute a specific x shape to the line equation you will get a specific y for it).

Now to find the intersections we have to solve the above system of equations, i.e. find such couples
(coordinates) [x,y] that will satisfy both equations at once. One way to do this is to substitute the line
equation into the circle equation. By this we get:

X2+ (0.25*x +1.25)"2 =4

This is a guadratic equation, let's get it into the standard format so that we can solve it:

X"2 4+ 0.0625 * x~2 + 0.625 * x + 1.5625 =4

1.0625 * x~2 + 0.625 * x-2.4375 =0

Note that this makes perfect sense: a quadratic equation can have either one, two or no solution (in the
realm of real numbers), just as there can either be one, two or no intersection of a line and a circle.

Solving quadratic equation is simple so we skip the details. Here we get two solutions: x1 = 1.24881 and x2
= -1.83704. These are the x position of our intersections. We can further find also the y coordinates by
simply substituting these into the line equation, i.e. we get the final result:

e intersection 1: [1.24881, 1.5622025]
e intersection 2: [-1.83704, 0.79074]

See Also

e linear algebra

Analytic Geometry LRS Wiki 36/895

anarchism

Anarchism

Anarchism (from Greek an, no and archos, ruler) is a socialist political philosophy rejecting any social
hierarchy and oppression, most notably that of capitalism and state but also any other form, e.g. nationalism,
identity fascism, hero culture etc. Anarchism doesn't mean without rules, but without rulers; despite
popular misconceptions anarchism is not chaos -- on the contrary, it strives for a stable, ideal society of
equal people who live in peace. It means order without power. Let's also stress that anarchism is
ALWAYS incompatible with and strongly opposes capitalism, as it's sadly heard too many times from
the mouth of common people they think anarchism to be something akin "true capitalism" or "free market"
(people get very confused by abuse of the word "free") -- NO, capitalism and formal government are an
anarchist's two most opposed ideas (and please do not be mislead by attempts at deception e.g. by so called
"anarcho capitalists"; such a term just tries to merge two fundamentally incompatible ideas, like for example
"militant pacifist" or "communist capitalist"). The symbols of anarchism include the letter A in a circle and a
black flag that for different branches of anarchism is diagonally split from bottom left to top right and the top
part is filled with a color specific for that branch.

LRS is a truly anarchist movement, specifically anarcho pacifist and anarcho communist one. True, purest
anarchism is pacifist, communist and altruistic as that's the perfect ideal of society without hierarchy.
Other forms of anarchism that try to sneak in acceptance of concepts such as "justified violence" or some
form of "market economy" are mostly just poses of teenage boys who really believe in capitalism but want to
adopt a cool label of "anarchist".

A great many things about anarchism are explained in the text An Anarchist FAQ, which is free licensed and
can be accessed e.g. at
https://theanarchistlibrary.org/library/the-anarchist-fag-editorial-collective-an-anarchist-fag-full.

Anarchism is a wide term and encompasses many flavors such as anarcho communism, anarcho pacifism,
anarcho syndicalism, anarcho primitivism or anarcho mutualism. Some of the branches disagree on specific
questions, e.g. about whether violence is ever justifiable, or propose different solutions to issues such as
organization of society, however all branches of anarchism are socialist and all aim for elimination of
social hierarchy such as social classes created by wealth, jobs and weapons, i.e. anarchism opposes state
(e.g. police having power over citizens) and capitalism (employers exploiting employees, corporations
exploiting consumers etc.).

There exist many fake, pseudoanarchist ideologies such as "anarcho" capitalism (which includes e.g. so
caleed crypto "anarchism") that deceive by their name despite by their very definition NOT fitting the
definition of anarchism (just like Nazis called themselves socialists despite being the opposite). Also the
"new", western pseudoleftist "anarchism" is NOT true anarchism, e.g. "anarcha" feminism is just fascist
bullshit. Anything individualist, connected to feminism, LGBT etc. is not true anarchism. The propaganda also
tries to deceive the public by calling various violent criminals anarchists, even though they very often can't
fit the definition of a true anarchist.

See Also

e communism
e libertarianism

anarch

Anarch

Poor man's Doom?

Anarch is a LRS/suckless, free as in freedom first man shooter game similar to Doom, written by drummyfish.
It has been designed to follow the LRS principles very closely and set an example of how games, and

Anarch LRS Wiki 37/895

software in general, should be written. It also tries to be compatible with principles of less retarded society,
i.e. it promotes anarchism, anti-capitalism, pacifism etc.

The repo is available at https://codeberg.org/drummyfish/Anarch or https://gitlab.com/drummyfish/anarch.

Some info about the game can also be found at the libregamewiki: https://libregamewiki.org/Anarch.

{ Though retrospectively | can of course see many mistakes and errors about the game and though it's not
nearly perfect, | am overall quite happy about how it turned out for what it is, it got some attention among
the niche of suckless lovers and many people have written me they liked the game and its philosophy. Many
people have ported it to their favorite platforms, some have even written me their own expansions of the
game lore, tricks they found etc. If you're among them, thank you :) ~drummyfish }

h@\hMh: :@@hhh\h@rrrr//rrrrrrrrrrrrrrrrrrrre@@@@hMMEE@M@: @hhnhhMnr=\@hn@n@h@-::\:h
hMhh@@\\@e@\\h:M/r/////rrrrrrrrrrrrrrr//re@@EE@MMh@@hhh\\\=rMr=M@hh\hn\:\:h::\@\:
@nh==hhhMM@hrh\M/r/////rrrrrrrrrrrrrrr//@@eeeehhMah\MhhhMM\@e@e@M\hh\\\Mhh\\\\hh
thh=@Mh/;;;@hr:M,///;;/////rrr//rrrrrr//@@EEERhN\N@EGHM:==h\@@: : \\\:M\@\h\M:\ :=@h
\=MhM@hr ~hMhhM///@REECEECEEEEEEEECEEAR/ /@ee@ERrMM@n\M=: @M\\\\Mh\\\hr\n\--h-::r:r
:MheM@e™ " rh@\@///CReEREEECRACECERCECAREERAAEGMr\@@\ h@: \h\h@\Mhh@@\M@e@@-n\rn@:h
:MhhMn@// r; ; @/ hMREERECRECEACEACERRECRECEREEREEEAEGMNMh h : M@MhMhMh@\\ rM/@h@nn=-MrnM@: h
:nhhhhh\\//\ : : AMEEEEEEEAECEECEACEEAREERAEEREECREAEEA rMM@@nh@M\=nh@@eMa. —hM@n@ @E@e@:h
\@\h@@rrrr/rre=MeeeEEEEREEEEEEN rAEEEEEEEEEEREEAMrhn@\M@: NMh\@e@e@. . .h:::::@---::h
-M\h=h\" rhM\MEEERECRECREREEE=CERREEREEREEEAEMhME@\ hh@M@Mhh@- \MMhrr\\\ MMh::\\-\
h@hhh\h* * rMh\MEEEEEERREREEEEENT; ; ; ; rNEEEEREREEArar///=@\@\ r\\hManrrr@\n\h\M\\\\\:
hn===hhM=; hhhh\MrMnrr=rrr=r@rhhr; .r,/hr=r=r=h=r@=/-; /MhhMr:h\@h=. .. r\@hMhM: /\h\=

@n==M\h@=; hhh\\Mrr=r=r=rMr=hrMMr; ; ; , ; ======== MM@r=./;@:MMM\h=r=rM/rh@@@M-n---:-h
:\=hMn@@@=\hhh:M HY A

\hhnM@=@: @MM/r P \h M /ir, //,,r r=r=r@\=r=r=r= @rnMn r
Mrrr=rr==@rr=rrr=rrr=/=r===r==/1,

rrrrrrrr@=rrrrrrrrrrr//r=r=r=r=r;. ,.r=r\---hr @r===-r—r—,,, ry;;hh@:;;55555505-3
r=rrr=rr\\@rr=rrr=r/;/:rr=rrr=rr;r,..=r\--.-h=r@r----=rrr=rrr--:,;;:,5;5:,5:3,5--
rrrr:-@=====:,;,;-/;/:rrrrrrrrr;;....r\--. , \hrrrrrrrrrrrrrrrrrrrrr----- rrrrrrrrr
yiviaes sasaa=sas/r-rreerrrrrrrrrrrrr\-., \@rrrCCrrrCCrCCCCECCCCCCCCCCCCCCrrrrr
,,,,,,.,;,;,,,,,,, [daddddddddddasdddaCEHA ldddddddadaddddddddddddddassssassaals
y it eme-wmii=iii-=rr/rrr/rrr/rrr/rrr/\-.:;:@rrr/rrr/rrr/rrr/rrr/rrr/rrr/rrr/rrr
-.- r/r/r/r/r/r/r/r/r/r/r/r/r/r/r/r/\-- yo\@/r/r/r/r/v/v/e/r/r/r/r/rv/r/v/rv/r/r/
/r/r/r/r/r/r/r/r/r/r/r/r/r/r/r/r/r/r\-.,,:,:@r/r/r/r/r/r/r/r/r/r/r/r/r/r/r/r/r/r
111777717 77777777777777777777777777\::-,5,-:@////////////////////1//////////////
L5050 7577 757775777577 ii-, 0 =@ /1511157773717 3777577757773:7773777
1117171177771 77777777777777777777/\----:-.,-W/////////17///7////77////7//7////////

rrrrrrrrrrrrrrrrPNPYPYYIPPYPPNPNPPNPPPIPPN PPN PP P PP PPN PP PP PPy rr
nnnnnnnnnnnnNnnNNnnNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNANNNNNNNNNNANNNNNNNNNNNN
nnnnnnnnnnnnnnNnNnNnnNNN
nn..nnn...nn...nNNAONNANNANNNANNNANNNNNNNNANNNNNNNNNNNNNNNNNANNNNNN. . . NNNANNNNNNNNN
nnn.nnn.n.nn.n.nnnonnNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNANNNNNN. . NNNNNNNNNNNNNN
nnn.nnn.n.nn.n.nnnnNNNNNNNNNNNNANNNNNNANNNNNNANNNNNNNANNNNNNNNN. N. NNNNNNNNNNNNNN
nn...nn...nn...nNNANNANNANNANNNANNNANNNNNANNNNNNNNNNNNNNNNNANNNNNN. . . NNNANNNNNNNNN
nnnnnnnnnnnnnnNNnnNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNANNNNNNNNNNANNNNNNNNNNNN

screenshot from the terminal version

Anarch

has these features:

e [t is completely public domain free software/free culture under CCQ, including all code and assets

¢ It has extremely low hardware demands, fitting into 256 kB (WITH assets, with mods and

which were all made from scratch by drummyfish.

compression even 60 kB) and requiring only about 32 kB of RAM and 50 MHz CPU. GPUs need not

apply.

e |t is written in pure C99 without any dependencies (not even the standard library). It uses no dynamic

heap allocation and no floating point.

e [t is extremely portable, written against a very tiny 1/O layer. As such it has been ported to many

* Mods and configs follow suckless philosophy: mods are just diffs, config is part of source code.

Anarch

platforms such as GNU/Linux, BSD, Pokitto, browser JavaScript, Raspberry Pi and many others.

It is written in a single compilation unit and without any build system.
It is created with only free software.
It is well documented.

LRS Wiki

38/895

e Gameplay-wise Anarch offers 10 levels and multiple enemy and weapon types. It supports mouse
where available.

Technical Details
Anarch is written in C99.

The game's engine uses raycastlib, a LRS library for advanced 2D raycasting; this would be called "pseudo
3D" graphics. The same method (raycasting) was used by Wolf3D but Anarch improves it to allow different
levels of floor and ceiling which makes it look a little closer to Doom (which however used a different
methods called BSP rendering).

The whole codebase (including raycastlib AND the assets converted to C array) has fewer than 15000 lines of
code. Compiled binary is about 200 kB big, though with compression and replacing assets with procedurally
generated ones (one of several Anarch mods) the size was made as low as 57 kB.

The music in the game is procedurally generated using bytebeat.

All images in the game (textures, sprites, ...) are 32x32 pixels, compressed by using a 16 color subpalette of
the main 256 color palette, and are stored in source code itself as simple arrays of bytes -- this eliminates
the need for using files and allows the game to run on platforms without a file system.

The game uses a tiny custom-made 4x4 bitmap font to render texts.

Saving/loading is optional, in case a platform doesn't have persistent storage. Without saving all levels are
simply available from the start.

In the suckless fashion, mods are recommended to be made and distributed as patches.
Bad Things (Retrospective)

The following is a retrospective look on what could have been done better, written by drummyfish (a
potential project for someone might be to implement these and so make the game even more awesome):

¢ [t might have been better to write it in C89 than C99 for better portability.

¢ Sound effects would likely be better procedurally generated just like music. It would be less code and
data in ROM and the quality probably wouldn't be that much worse as the samples are shitty quality
anyway.

¢ The palette used might have rather been RGB 332 instead of the custom palette, again less code and
less data in ROM, though visual quality might suffer a bit and things like diminishing colors might
require some extra code or look up tables (like in Doom).

¢ The python scripts for data conversion should be rewritten to C. Using python was just laziness.

¢ Raycastlib itself has some issues, but those should be addressed separately.

e The game is really a bit too hard (tho this can easily be changed in settings) and gameplay is not
great (like explosions pushing player instantly, not too good, too few items, player often lacks
ammo/health, ...), movement inertia could be in vanilla game to make it feel nicer etc.

e Some of the code is awkward, like SFG_recomputePlayerDirection was an attempt at optimization
but it's probably optimization in a wrong place that does nothing, ...

e Some details like having separate arrays for different types of images -- there is no reason for that, it
would be better to just have one huge array of all images; maybe even have ALL data in one huge
array of bytes.

ancap

"Anarcho Capitali$m

Not to be confused with anarchism.

"Anarcho" Capitali$m LRS Wiki 39/895

So called "anarcho capitalism" (ancap for short, not to be confused with anpac or any form of anarchism) is
probably the worst, most retarded and most dangerous idea in the history since the Big Bang, and that is the
idea of supporting capitalism absolutely unrestricted by state or anything else. You'd have to have some
worms in your brain to support that. No one with at least 10 brain cells and/or anyone who has spent at least
3 seconds observing the world could come up with such a stupid, stupid idea. We, of course, completely
reject this shit.

It has to be noted that "anarcho capitalism" is not real anarchism, despite its name. Great majority of
anarchists strictly reject this ideology as any form of capitalism is completely incompatible with anarchism --
anarchism is defined as opposing any social hierarchy and oppression, while capitalism is almost purely
based on many types of hierarchies (internal corporate hierarchies, hierarchies between companies,
hierarchies of social classes of different wealth etc.) and oppression (employee by employer, consumer by
corporation etc.). Why do they call it anarcho capitalism then? Well, partly because they're stupid and don't
know what they're talking about (otherwise they couldn't come up with such an idea in the first place) and
secondly, as any capitalists, they want to deceive and ride on the train of the anarchist brand -- this is not
new, Nazis also called themselves socialists despite being the complete opposite.

The colors on their flag are black and yellow (this symbolizes shit and piss).

It is kind of another bullshit kind of "anarchism" just like "anarcha feminism" etc.

The Worst Idea In History

As if capitalism wasn't extremely bad already, "anarcho" capitalists want to get rid of the last mechanisms
that are supposed to protect the people from corporations -- states. We, as anarchists ourselves, of course
see states as eventually harmful, but they cannot go before we get rid of capitalism first. Why? Well, imagine
all the bad things corporations would want to do but can't because there are laws preventing them -- in
"anarcho" capitalism they can do them.

Firstly this means anything is allowed, any unethical, unfair business practice, including slavery, physical
violence, blackmailing, rape, worst psychological torture, nuclear weapons, anything that makes you the
winner in the jungle system. Except that this jungle is not like the old, self-regulating jungle in which you
could only reach limited power, this jungle offers, through modern technology, potentially limitless power
with instant worldwide communication and surveillance technology, with mass production, genetic
engineering, Al and weapons capable of destroying the planet.

Secondly the idea of getting rid of a state in capitalism doesn't even make sense because if we get rid of
the state, the strongest corporation will become the state, only with the difference that state is at
least supposed to work for the people while a corporation is only by its very definition supposed to care
solely about its own endless profit on the detriment of people. Therefore if we scratch the state, McDonalds
or Coca Cola or Micro$oft -- whoever is the strongest -- hires a literal army and physically destroys all its
competition, then starts ruling the world and making its own laws -- laws that only serve the further growth
of that corporation such as that everyone is forced to work 16 hour shifts every day until he falls dead. Don't
like it? They kill your whole family, no problem. 100% of civilization will experience the worst kind of
suffering, maybe except for the CEO of McDonald's, the world corporation, until the planet's environment is
destroyed and everyone hopefully dies, as death is what we'll wish for.

A typical "anarcho"capitalist is a redneck who probably thinks the only thing preventing him from beating a
corporation at its own game is state holding him back with high taxes -- he thinks that if he's allowed to keep
all his crops he'll become a beast starting his own business that will go on beating Facebook, i.e. he thinks
that if he can keep all five of all five carrots he grows on his field, he will somehow become so powerful he
can bring down an army of ten thousand men with the most advanced technology who by the way can now
also keep all money it makes, because he heard this in some fairy tale about Henry Ford or something. Of
course that's highly laughable and pathetic, but indeed typically American.

All in all, "anarcho" capitalism is advocated mostly by children who don't know a tiny bit about anything, by
children who are being brainwashed daily in schools by capitalist propaganda, with no education besides an
endless stream of ads from their smartphones, or capability of thinking on their own. However, these children
are who will run the world soon. It is sad, it's not really their fault, but through them the system will probably
come into existence. Sadly "anarcho" capitalism is already a real danger and a very likely future. It will likely

"Anarcho" Capitali$m LRS Wiki 40/895

be the beginning of our civilization's greatest agony. We don't know what to do against it other than provide
education.

God be with us.

See Also

e capitalism
e libertarianism

anpac

Anarcho Pacifism

Anarcho pacifism (anpac) is a form of anarchism that completely rejects any violence. Anarcho pacifists
argue that since anarchism opposes hierarchy and oppression, we have to reject violence which is the
greatest tool of oppression and establishing hierarchy. This would make it the one true purest form of
anarchism. Anarcho pacifists use a black and white flag.

Historically anarcho pacifists such as Leo Tolstoy were usually religiously motivated for rejecting violence,
however this stance may also come from logic or other than religious beliefs, e.g. the simple belief that
violence will only spawn more violence ("eye for an eye will only make the whole world blind"), or pure
unconditional love of life which one simply feels and chooses to follow without the need for any further
justification.

We, LRS, advocate anarcho pacifism. We see how violence can be a short term solution, even to preventing a
harm of many, however from the long term perspective we only see the complete delegitimisation of
violence as leading to a truly mature society. We realize a complete, 100% non violent society may be never
achieved, but with enough education and work it will be possible to establish a society with absolute
minimum of violence, a society in which firstly people grow up in a completely non violent environment so
that they never accept violence, and secondly have all needs secured so that they don't even have a reason
for using violence. We should at least try to get as close to this ideal as possible.

antialiasing

Antialiasing

Antialiasing (AA) means preventing aliasing, i.e. distortion of signal (images, audio, video, ...) caused by
discrete sampling. Most people think antialiasing stands for "smooth edges in video game graphics", however
that's a completely inaccurate understanding of antialiasing: yes, one of the most noticeable effects of 3D
graphics antialiasing for a common human is that of having smooth edges, but smooth edges are not the
primary goal, they are not the only effect and they are not even the most important effect of antialisng.
Understanding antialiasing requires understanding what aliasing is, which is not a completely trivial thing to
do (it's not the most difficult thing in the world either, but most people are just afraid of mathematics, so
they prefer to stick with "antialiasing = smooth edges" simplification).

The basic sum up is following: aliasing is a negative effect which may arise when we try to sample (capture)
continuous signals potentially containing high frequencies (the kind of "infinitely complex" data we encounter
in real world such as images or sounds) in discrete (non-continuous) ways by capturing the signal values at
specific points in time (as opposed to capturing integrals of intervals), i.e. in ways native and natural to
computers. Note that the aliasing effect is mathematical and is kind of a "punishment" for our "cheating"
which we do by trying to simplify capturing of very complex signals, i.e. aliasing has nothing to do with noise
or recording equipment imperfections, and it may occur not only when recording real world data but also
when simulating real world, for example during 3D graphics rendering (which simulates capturing real world
with a camera). A typical example of such aliasing effect is a video of car wheels rotating very fast (with high
frequency) with a relatively low FPS camera, which then seem to be rotating very slowly and in opposite
direction -- a high frequency signal (fast rotating wheels) caused a distortion (illusion of wheels rotating
slowly in opposite direction) due to simplified discrete sampling (recording video as a series of photographs

Antialiasing LRS Wiki 41/895

taken at specific points in time in relatively low FPS). Similar undesirable effects may appear e.g. on high
resolution textures when they're scaled down on a computer screen (so called MoirA© effect), but also in
sound or any other data. Antialiasing exploits the mathematical Nyquista[JJShannon sampling theorem that
says that aliasing cannot occur when the sampling frequency is high enough relatively to the highest
frequency in the sampled data, i.e. antialiasing tries to prevent aliasing effects typically by either preventing
high frequency from appearing in the sampled data (e.g. blurring textures, see MIP_mapping) or by
increasing the sampling frequency (e.g. multisampling). As a side effect of better sampling we also get things
such as smoothly rendered edges etc.

Note that the word anti in antialising means that some methods may not prevent aliasing completely, they
may just try to suppress it somehow. For example the EXAA (fast approximate antialiasing) method is a
postprocessing algorithm which takes an already rendered image and tries to make it as if it was properly
rendered in ways preventing aliasing, however it cannot be 100% successful as it doesn't know the original

signal, all it can do is try to give us a good enough approximation.

How to do antialiasing? There are many ways, depending on the kind of data (e.g. the number of
dimensions of the signal or what frequencies you expect in it) or required quality (whether you want to
prevent aliasing completely or just suppress it). As stated above, most methods make use of the
Nyquista[jJShannon sampling theorem which states that aliasing cannot occur if the sampling
frequency is at least twice as high as the highest frequency in the sampled signal. l.e. if you can
make sure your sampling frequency is high enough relatively to the highest frequency in the signal, you will
completely prevent aliasing -- you can do this by either processing the input signal with a low pass filter (e.qg.
blurring an image) or by increasing your sampling frequency (e.g. rendering at higher resolution). Some
specific antialiasing methods include:

e avoiding aliasing: A pretty straightforward way :) Aliasing can be avoided e.g. simply by using low
resolution textures as opposed to high resolution ones.

e multisampling (MSAA), supersampling (SSAA) etc.: Increasing sampling frequency, typically in
computer graphics rendering. The specific methods differ by where and how they increase the
number of samples (some methods increase sampling uniformly everywhere, some try to detect
aliasing areas and only put more samples there etc). A simple (but expensive) way of doing this is
rendering the image at higher resolution and then scaling it back down.

e EXAA: Cheating, approximation of antialiasing by postprocessing, usually in shaders, cheap but can
be imperfect.

e MIP mapping: Way of preventing aliasing in rendering of scaled-down textures by having
precomputed scaled-down antialiased versions of it.

e anisotrpic filtering: Improved version of MIP mapping.

e motion blur: Temporal antialiasing in video, basically increasing the number of samples in the time

domain.
. 'Kl

Code Example

Here is a quite primitive example of supersampling (one of the simplest antialiasing methods) in C. We will
draw a two dimensional "fish eye" distorted sine pattern (similar to checkerboard pattern but smooth, to
show that aliasing happens even with smooth images!) that gets smaller towards the edges, i.e. the pattern
is quite big in the center but near the edges the brightness oscillates with subpixel frequency which will lead
to aliasing. First we'll draw the pattern as is, i.e. taking one sample per each pixel, letting aliasing happen;
then we'll try to suppress aliasing by taking multiple samples per each pixel and averaging them -- this
effectively increases our sampling frequency. It is basically equivalent to drawing the picture in increased
resolution and then smoothly downsizing it (but in practice we don't do this as we'd waste a lot of RAM on
storing the big resolution picture, which is completely unnecessary). Let's see the code.

#include <stdio.h>
#include <math.h>

#define W 64 // image width
#define H 32 // image height
#define S 9.0 // pattern scale

const char palette[] = "#0Vaxsflc/!;,.- ";

Antialiasing LRS Wiki 42/895

double sample(double x, double y) // function sampling our pattern

{
return sin(
sin(

}

*

(x (x +1) : (1 - x))
(y

S/ <07)
S / <0 ? (y+1):(1-y)));

char doubleToChar(double x) // maps <-1,1> brightness to palette character
{

int i = ((x + 1) / 2.0) * 15;

return palette[i <©® ? 0 : (i >157 15 : 1i)];
}

void draw(int antialiasSamples)

{
#define OFFSET 0.0001 // this tiny offset makes the pictures a bit nicer

double
X, y = -
stepX
stepY

FFSET,
W:
H

1+0
2.0 /
2.0 / H;
double
aaStepX
aaStepY

stepX / antialiasSamples,
stepX / antialiasSamples;

for (int j = 0; j < H; ++j) // draw rows
{
x = -1 + OFFSET;

for (int 1 = 0; i < W; ++i) // draw columns
double r = 0;

for (int 1 = 0; 1 < antialiasSamples; ++1)
for (int k = 0; k < antialiasSamples; ++k)
r += sample(x + k * aaStepX,y + 1 * aaStepY);

putchar(doubleToChar(r / (antialiasSamples * antialiasSamples)));
X += stepX;

}

y += stepY;
putchar('\n'");
}
}

int main(void)

{
draw(1l);
putchar('\n');
draw(8);
return 0;

}

Here are the results, first picture is without any antialiasing, second one with 8x8 supersampling (i.e. taking
64 samples per pixel):

c//xfs/c!fcs/\xf//cfssflc/!//cllfllc///clfssfc//fx1/scflc/sfscl

/,'Vsa;c,x!a,cVs;,cxVxl!;,,;/cfsfc/;,,; ' xVVxc,;sVc,alx,/;afVcc
fss/c/sfscf/sl/cssfc//clfssssfllcllfssssflc//cfssc/ls/fecsfs/1/fl
/,;0sV;/.x'V,c0s;,/xVvxl!,.,;'cfsfc!;,., ' IxVVx/, ;s0c,V!x./;VfV/c
1-,#s0./-a;0-c#x.-/a##al;.--.;cfxfc;.--.;la##a/- . x#c-0;a-/.#f#/cC
cllafx!c;s/x!'caf!!lcsaxsl/!;;!/clslc/!;;!'/lsxasc!!fac!x/s;c!xfacl
/., #s0,/-a'0.c#s, ./a#0x1;.-.,'cfxfc!,.-.;1x0#a/.,s#c.0'a-/,0f#/c
x#V-/.0s#;a.#f-10#s;--; la0##0afc! cfaO##0al; --;s#0! -f#.a;#s0-c-sf
/,;0sV;/.x!V,c0s;,/xVVxl!,.,;tcfsfc!;,., 'lxVVx/,;s0c,VIx./;VfV/c

c/csfs/c/fcs/\sf//cfssflc////cl1fllc////clfssfc//fsl/scf/c/slscl
s#V-/ . NVs#;a.#f-/V#s; --;la0##Vafc! cTaO##0al; --;s#V!-T#.a;#s0.c-sf
fxx;clxfa/s!xf;cxaf/;!/lsxaaxsfc/1lfsxaaxsl/!;/faxc;fx!s/afx!c;fl
c;lafx!c;s/x;caf!;csaasl/!;; ! /cfsfc/!; ;' /lsaasc; ! fac;a/s;clafacl

Antialiasing LRS Wiki 43/895

1-,#s0./-a;0-c#x.-/a##al;.--.;cfxfc;.--.;la##ta/- . x#c-#;a-/ . #f#/c
/,;0sV;/.x!'V,c0s;,/xVVxl!,.,;cfsfc!;,., ' IxVVx/, ;s0c,V!x./;VfV/c
leccflfclefcfclfleclfffflccccccllflliccccecclffffleclflcfcfcleflfll
fxs!clsfx/s!xllcsxf/!!/Tsxxxsfflclffsxxxsl/!!/fxsc!fx!ls/xfs!c!fl
leccflfclcfecfclfleclfffflcccceccllfllcccccclfffflecclflcfcfcleflfll

/,;0sV;/.x'V,c0s;,/x0vxl!,.,;'cfsfc!;,.,'lxVVx/, ;s0c,V!x./;VfV/c
1-,#s0./-a;0-c#x.-/a##al;.--.;cfxfc;.--.;la##ta/- . x#c-#;a-/ . #f#/c
c;lafx!c;s/x;caf!;csaasl/!;;!/cfsfc/!;;!/lsaasc; ! fac;x/s;clafacl

fax;c!xfa/s!xf;cxaf/;!/lsxaaxsfc/cfsxaaxsl/!;/faxc;fx!s/afx!c;fl
s#V-/ . Vs#;a.#f-/V#s; --;la0##Vafc! cfaV##0al; - - ;s#V!-f#.a;#s0.c-sf
c/csfs/c/fcs/\sf//cfssflc////cllfllc////clfssfc//fsl/scf/c/slscl

/,;0sV;/.x!V,c0s;,/xVVxl!,.,;tcfsfc!;,., 'lxVVx/,;s0c,VIx./;VfV/c
x#V-/.0s#;a.#f-10#s; --; LaO##0afc! cfaO##0al; --;s#0! -f#.a;#s0-c-sf
/.,#s0,/-a'0.c#s,./a#0x1;.-.,'cfxfc!,.-.;1x0#a/.,s#c.0'a-/,0f#/c
c;lafx!c;s/x!'caf!;csaxsl/!;;!/cfsfc/!;;!'/lsxasc; ! fac!x/s;c!xfacl
1-,#s0./-a;0-c#x.-/a##al;.--.;cfxfc;.--.;la##a/- . x#c-0;a-/ . #f#/c
/,;0sV;/.x!'V,c0s;./x0Vxl!,..;!cfsfc!; .., 1xVOx/.;s0c,V!x./,Vf0/c

fffclcflfcfcflccfflccccLffffffllclUfffffflcccclffcclfcfcflfclcll
c/csfs/c/fcs/\sf//cfssflc////cl1fllc////clfssfc//fsl/scf/c/slscl

TLTTTTILL UL fleUf flece LU FFFFLLLLLLFFfffllccclffleccfleflLLLLLLLL
TLLTTTILLLLLf e ffleccLLFFFFFLLLLLLFffffllccclfflecflefLTITTTLLLL
ISRRRRRRR R RN AR R R AR R R AR RAR AR AR R R RRRRARRRRRARS
TLTTTTILL LU fleelfffllccceclllllllcceccllfffleclflelfLLLLLLLLLL
T LU felfeclffleccLUFFFFFLLLLLLFFfffllccclffleccflecfcl111111l
LIl leces/Ix/ HExs! H TefsxxxsTfleclfsxxxxfc/ ! lesxf!/sf/scllfllcll

ffflllcff!xl,xVc.;fVOas/;..,;/1lssl/;,..;/fa0Vf;./aa;ca;sllcflflf
ccclllfcex!1V!, f0ac, .,/sa00vVasl//1saV00Vsc;.,ca0s, ;af;a/llfcfclc
ffflllcff!x1.x0c.,fV#Vs/,--.;/1ssl/;.--,/fV#0f;-/Va,ca;xflcfcflf

TLTTTTTILLLLF LeTFILleLLLLFFFILLLLLLfffllllecclifliiittiiitt
ccclllfcca!l0!.f#Vc. -./sV##0Vx1//lsaO##Vsc, - .cV#s, ;Vf,a!clscfclc
LU L felsc/Usflc/ccffsssfflcclffsssfflc//1fsfccflecfcllllllll

ffflllcff!sl;sac, ;laVafc;,,,!/1fsl/!;,,;/favaf!,/ax;cx!sllcflflf
ffflllcff;x1.a0c-,fO#0s/,--.,!1ssl/,.--,/fV#0f,-/0V,cV,xfl/fcflf
ffflllcff/sl;sac;!lavafc!,,;!/Lffl/!;,,;/fxVaf!,cax!cx!sllcflflf

TTTTTTTTTTTTTTTTTTIIIIIIiiiieeeeiiiiitiiiiiiieeieiiittt
TLTLLLL L feclsc/ss1///cfssssfflcclffssssfl///1fsf/cslcfclll1ll11l
LUl iefl/fs1//lsssfc/////clfflcc////clssslc/csf/1Lfcfllclllll
ffflllcff!x1,xVc.;fVOVs/;...;/1ssl/;,..,/fa0OVf;./Va,ca;sllcfcflf
ffflllcff!x1.x0c-,fV#Vs/,--.,11ssl/;.--,/fV#0f;-/Va,ca;xfl/fcflf
Ll itefL/fs1//sssfc/////c\fflc/////clsssl//css/1s/fllclllll
ccclllfcex/la/; fval;, ;cfaVVvvxslc/lsxaVVasc;,;cxVs; laf!x/11fclclc
ccclllfcex!1V!, f0ac, .,/sa00vVasl//1lsaV00asc;.,cals,;af;a/llfclclc
ffflllcff/s1;sac;!laVxfc!;,;!/Lfflc!;,;!/fxVaf!;cxx!cx!sllcllflf
1Lt lefl/fsl//sssfc////cclfflec////clssslc/csf/LfcflLll1111l
cccllllces/la/; faxl!; cfxaVaxslcclfxaaaxsc!;;cxaf! IxfIx/11fllclc
T e fleffleclfffllcccecllllllcccecllfffleclffelfclllllllll
fffLLLLff/s;sac; ! Ixaxfc!;,; ! /1fflc!;;; ! /fxaaf!;cxx!ex!sllcllflf
TTTTTTTTTTTTTLLLF LU Le L UL FFITIIIILLLFfIl el fiiieeett
T lefleffleclfsfllc//cccllllcec//cclfsfle/Iffclfcfllllllll
TLTTTTTTTTTITLLF el fillleccllleececlltfllleliiiittiitttt
ISSRARARRR AR AR AR R AR R AR RN AR AR AR RRRRARRRARRANT

It's a bit harder to see with ASCII art but still it is noticeable even here (the more it will be seen in "real"
graphics) -- the first version of the image is much noisier, despite the underlying pattern itself being smooth,
just sampled differently. Notice the images really significantly differ near the edges where aliasing appears,
the center is basically the same -- here we can spot an obvious weakness of supersampling: that we have
wasted computational power on supersampling the part which didn't need it. You can think of ways how this
could be improved. Also think for example about placing our samples within one pixel differently than in a
uniform grid -- what effect would it have? Here are things for you to explore.

antivirus_paradox

Antivirus Paradox

{ I think this paradox must have had another established name even before antiviruses, but | wasn't able to
find anything. If you know it, let me know. ~drummyfish }

Antivirus Paradox LRS Wiki 44/895

Antivirus paradox is the paradox of someone who's job it is to eliminate certain undesirable phenomenon
actually having an interest in keeping this phenomenon existing so as to keep his job. A typical example is an
antivirus company having an interest in the existence of dangerous viruses and malware so as to keep their
business running; in fact antivirus companies themselves secretly create and release viruses and malware.

Cases of said behavior are common, e.g. the bind-torture-kill serial killer used to work as a seller of home
security alarms who installed alarms for people who were afraid of being invaded by the bind-torture-killer,
and then used his knowledge of the alarms to break into the houses -- a typical capitalist business. It is also a
known phenomenon that many firefighters are passionate arsonists because society simply praises them for
fighting fires (as opposed to rewarding them for the lack of fires).

In capitalism and similar systems requiring people to have jobs this paradox prevents progress, that is to say
actual elimination of undesirable phenomena, hence capitalism and similar systems are anti-progress. And
not only that, the system pressures people to artificially creating new undesirable phenomena (like a "lack of
women in tech" and similar bullshit) just to create new bullshit jobs that "fight" this phenomena. In a truly
good society where people are not required to have jobs and in which people aim to eliminate work this
paradox largely disappears.

apple

Apple

"Think different: conform."

Apple is a terrorist organization and one of the biggest American computer fashion corporations, infamously
founded by Steve Job$, it creates and sells overpriced, abusive, highly consumerist proprietary electronic

devices.

See also http://techrights.org/wiki/Apple%27s_Dark_Side.

app

App

App is a retarded capitalist name for application; it is used by soydevs, corporations and normalfaggots
(similarly to how "coding" is used for programming). This word is absolutely unacceptable and is only to be
used to mock these retards.

Anything called an "app" is expected to be bloat, badly designed and, at best, of low quality (and, at worst,
malicious).

approximation

Approximation

Approximating means calculating or representing something with lesser than best possible precision --
estimating -- purposefully allowing some margin of error in results and using simpler mathematical models
than the most accurate ones: this is typically done in order to save resources (CPU cycles, memory etc.) and
reduce complexity so that our projects and analysis stay manageable. Simulating real world on a computer is
always an approximation as we cannot capture the infinitely complex and fine nature of the real world with a
machine of limited resources, but even within this we need to consider how much, in what ways and where
to simplify.

Using approximations however doesn't have to imply decrease in precision of the final result --
approximations very well serve optimization. E.g. approximate metrics help in heuristic algorithms such as
A*. Another use of approximations in optimization is as a quick preliminary check for the expensive precise
algorithms: e.g. using bounding spheres helps speed up collision detection (if bounding spheres of two

Approximation LRS Wiki 45/895

objects don't collide, we know they can't possibly collide and don't have to expensively check this).
Examples of approximations:

¢ Distances: instead of expensive Euclidean distance (sqrt(dx~2 + dy”~2)) we may use Chebyshev
distance (dx + dy) or Taxicab distance (max(dx,dy)).

e Engineering approximations ("guesstimations"): e.g. sin(x) = x for "small" values of x or pi = 3
(integer instead of float).

¢ Physics engines: complex triangle meshes are approximated with simple analytical shapes such as
spheres, cuboids and capsules or at least convex hulls which are much easier and faster to deal
with. They also approximate relativistic physics with Newtonian.

¢ Addition/subtraction (of integers) can sometimes be approximated with logical OR/AND operations,
as they behave a bit similarly. This can be used e.g. for brightening/darkening of pixel colors in 332 or
565 format -- without the approximation addition of colors in these formats is very expensive
(basically requires conversion to RGB, addition, clamping and a conversion back).

e Square root/square (integer) can be roughly approximated too. E.g. to get a quick "almost square"
of a number you can try something like doubling each binary digit and shifting everything right, e.qg.
101 -> 11001 -- it's not very accurate but may be good enough e.g. for some graphics effects and may
be especially effective as hardware implementation as it works instantly and uses literally no logic
gates (you just reorder bits)! A bit improved version may construct a pair of digits from each digit as
logical AND (upper bit) and logical OR (lower bit) of the bit with its lower neighbor (lowest bit may still
just be doubled), e.g. 1101 -> 11010111. Square root can similarly be roughly estimated by reducing
each pair of bits with logical OR sown to a single bit (e.g. 101100 -> 110). { Dunno if this is actually
used anywhere, | came up with this once before | fell asleep. ~drummyfish } A famous hack in Quake,
called fast inverse square root, uses a similar approximation in floating point.

¢ 3D graphics is almost completely about approximations, e.g. basically all shapes are approximated
with triangle meshes, screen space effects (like SSAQ) are used to approximate global illumination,
reflections etc. Similarly ray tracing neglects indirect lighting etcetc.

¢ Real numbers are practically always approximated with floating point or fixed point (rational
numbers).

e Numerical methods offer generality and typically yield approximate solutions while their precision
vs speed can be adjusted via parameters such as number of iterations.

e Taylor series approximates given mathematical function and can be used to e.g. estimate solutions
of differential equations.

¢ Primitive music synthesis often uses simple functions like triangle/saw/square wave to approximate
sin waves (though many times it's done for the actual sound of these waves, sometimes it may be

simply to save on resources).
L] e

arch

Arch Linux
"BTW I use Arch"
Arch Linux is a rolling-release Linux distribution for the "tech-savvy", mostly fedora-wearing weirdos.

Arch is shit at least for two reasons: it has proprietary packages (such as discord) and it uses systemd. Artix
Linux is a fork of Arch without systemd.

arduboy

Arduboy

Arduboy is an Arduino-based, extremely tiny indie/"retro" handheld open gaming console, about the size of a
credit card, with monochrome (black&white) display; it was one of the earliest during the open console boom
and is at the same time among the best in many aspects (construction, hardware, community, games, price,
...). Not only is it one of the top open consoles out there, it is also one of the most minimalist and a great way

Arduboy LRS Wiki 46/895

to get into low level programming, learning C, embedded development etc. Even for a normie not intending
to program it it's just a super cool toy to play old nostalgic games on and flex with around friends. We can
really recommend getting Arduboy ASAP to anyone remotely interested in this kind of stuff. Arduboy is a bit
similar to the original Gamebuino (the one with monochrome screen), it may have been inspired by it. The
official website is https://www.arduboy.com/.

| ARDUBOY | |

~
o

Hasted Arduboy ASCII art.

Arduboy has a number of hack/mods, both official and unofficial, see e.g. Arduboy FX (version that comes
with memory for games so one doesn't have to use external PC to switch between them) or Arduboy Mini
(yet physically smaller version).

{ Let's make it clear | AM NOT PAID for this article :D Reading through it it sounds like I'm shilling it super
hard but it's really just that | like Arduboy, it was my first open console and | owe it my change in direction in
programming. Of course, Arduboy does have its flaws, it's still something designed for profit, it shills open
soars, forums need JavaScript and it's very possible it will become more spoiled in the future, however at the
moment it's something quite nice with the amount of capitalist bullshit being still tolerable. That may change
but as of writing this it still seems to be so. ~drummyfish }

Arduboy is not very expensive, one can even build it at home, there is documentation. The one you buy has
excellent construction, it doesn't suffer from any shortcomings often seen in other such devices (hard to
press buttons, display visibility angles, ...), the monochrome display is tiny but very good, with great
contrast, it is joy to just look at; some people even managed to "fake" multiple shades of gray by fast pixel
flickering. Seeing games on this display is somehow magical.

As can be judged from the name, Arduboy is based on Arduino (the famous free hardware platform), seems
like Arduino Leonardo. The console is very small not only physically but also by its hardware specification,
and that even compared to other open consoles -- Arduboy only has 2.5 KB of RAM which is really low,
however this is good for learning good programming and testing minimalist software; less is more. Besides
this there is 1 KB of EEPROM (for things like game saves, ...) and 32 KB of flash memory (memory for the
program itself -- as RAM is so low, one often tries to store data here). The CPU is 8bit ATmega32u4 clocked at
16 MHz (also not very much, good for minimalism). It's an AVR CPU which has a Harvard architecture, i.e.
program resides in different memory than the data; this can be something new to PC programmers as you
have to think what (and how) to place into the program memory (flash) vs the RAM (as there is very little
RAM); basically you have to use the PROGMEM macro to tell Arduino you want something placed in the flash
(however that data will then be read-only; the whole PROGMEM thing can be a bit of annoyance, but in the
end this is how small computers work). The vanilla version has no SD card. There are 6 buttons: arrows, A
and B and that's it -- one often has to think of how to make clever controls with this limited number of
buttons (another kind of minimalist exercise). The display is monochrome, 128x64 pixels. For
programming one typically uses Arduino IDE and the official Arduboy library (EQSS), but it's easy to do
everything from the command line. There is also some kind of speaker for making beeps. Arduboy also has a
good emulator, something that greatly helps with development which also isn't standard in the open
console world.

Arduboy way designed by Kevin Bates through Kickstarter in 2015, He still keeps improving it and regularly
gets involved in discussions on the official forums, that's pretty cool, he shares details and ideas about what
he's currently doing, he gets involved in discussing hacks etc. The community is also very nice and greatly
active itself -- yes, there are probably some rules on the forums, most people are absolute uber noobs, but it
just seems like politics, furriness and similar poison just doesn't get discussed there, everyone just shares
games, advice on programming etc., it's pretty bearable. In this it's similar to Pokitto -- there the community
is also nice, active, with the creator getting involved a lot.

Arduboy LRS Wiki 47/895

Games, mostly made by the users themselves, can either be found on the official website or in Erwin's
Arduboy game collection (https://arduboy.ried.cl/) which as of writing this lists something over 300 games
-- some are pretty impressive, like Arduventure, a pokemon-look-alike RPG game with quite huge world (very
impressive for such tiny amount of memory), MicroCity, Catacombs of the Damned or various other similar
raycasting 3Dish games. If you don't have Arduboy yet, you can play any game in the emulator (which even
runs in the browser), however the experience of playing on the small device cannot indeed be replicated. The
console can only hold one game at a time, so you always have to upload another one through USB if you
want to switch, though the Arduboy FX mod addresses this by adding additional game memory to the
console. Game progress is saved in EEPROM so you shouldn't lose your save states by uploading a new game
(unless that game carelessly uses the same space in EEPROM for its own savestates). Great many of the
games are EQSS, i.e. come with a free license or at least with the source code, only a minority has secret
source code. Some LRS software run on Arduboy, e.g. SAF, so also games like microTD and smolchess,
though for example Anarch is too much for this small hardware. Comun C interpreter also ran on Arduboy.

How free is it? Quite a lot, though probably not 100% (if spying is your concern then know this small thing
probably won't even be capable of trying to hurt you this way). Arduboy Schematics are available { Not sure
about license. ~drummyfish }, forums have tons of additional documentation and tutorials, Arduboy library is
free licensed (BSD 3 clause), Arduino itself also uses free licenses (though of course it won't likely be free
down to individual transistors...), games are very often free too. Being a minimalist computer there is a great
deal of practical freedom. All in all, it's one of the most "overall" free things you can get.

art

Art

There is no indecency in art.

Art is an endeavor that seeks discovery and creation of beauty and primarily relies on intuition, its value is in
feelings it gives rise to. While the most immediate examples of art that come to mind are for example music
and painting, even the most scientific and rigorous effort like math and programming becomes art when
pushed to the highest level, to the boundaries of current knowledge where intuition becomes important for
further development.

Good art always needs time, usually a lot of time, and you cannot predict how much time it will need, art
cannot be made on schedule or as a product. By definition creating true art is never a routine (though it
requires well trained skills in routine tasks), it always invents something new, something no one has done
before (otherwise it's just copying that doesn't need an artist) -- in this sense the effort is the same as that of
research and science or exploring previously unwalked land, you can absolutely never know how long it will
take you to invent something, what complications you will encounter or what you will find in an unknown
land. You simply do it, fail many times, mostly find nothing, you repeat and repeat until you find the good
thing. For this art also requires a lot of effort -- yes, there are cases of masterpieces that came to be very
casually, but those are as rare as someone finding a treasure by accident. Art is to a great degree a matter
of chance, trial and error, the artist himself doesn't understand his own creation when he makes it, he is only
skilled at searching and spotting the good, but in the end he is just someone who invests a lot of time into
searching, many times blindly.

See Also
® beaut
e databendin
® music
ascii_art

ASCII Art

ASCII art is the art of (mostly manually) creating graphics and images only out of fixed-width (monospace)
ASCIl characters. Strictly speaking this means no Unicode or extended ASCII characters are allowed -- these

ASCII Art LRS Wiki 48/895

would rather be called Unicode art, ANSI art etc., though the term ASCII art is quite often used loosely for any
art of this kind. If we keep being pedantic, ASCII art might also be seen as separate from mere ASCII
rendering, i.e. automatically rendering a bitmap image with ASCII characters in place of pixels, and ASCII
graphics that utilizes the same techniques as ASCII art but can't really be called art (e.g. computer generated
diagrams); though in practice this distinction is also rarely made. Pure ASCII art is plain text, i.e. it can't make
use of color, text decoration and other rich text formatting.

This kind of art used to be a great part of the culture of earliest Internet and near-Internet (e.g. BBS)
communities for a number of reasons imposed largely by the limitations of old computers -- it could be
created easily with a text editor and saved in pure text format, it didn't take much space to store or send
over a network and it could be displayed on text-only displays and terminals. The idea itself even predates
computers, people were already making this kind of images with type writers, e.g. some poets were
formatting their poems with typewriters to picture-shapes. Despite the technical limitations of displays
having been overpassed, ASCII art survives even to present day and lives on in the hacker culture, among
programmers, in Unix and "retro" game communities as well as on the Smol Internet, among people who just
want to keep it simple and so on. ASCII diagram may very well be embedded in a comment on a text-only
forum or in source code to explain some spatial concept. ASCIl art may even be superior for making certain
types of drawings from purely user perspective exactly by being simplified, it can be performed merely with
keyboard with little distraction (not caring about colors, not having to focus on right angles, to care about
line thicknesses, switching tools, deleting imprecise strokes, ...), similarly to how for example it may be
easier to create a rough model of a house in Minetest than to model it in Blender. { | found that for making
quick diagrams | prefer ASCII art to graphic tools. ~drummyfish } We, LRS, highly advocate use of ASCII art
whenever it's good enough.

Here is a simple 16-shade ASCII palette (but watch out, whether it works will depend on your font):
#0Vaxsflc/!;, .- . Another one can be e.g.: WMOKXkxocl;:,"'. .

Here are approximate brightness values for each printable ASCII character, with 0 being black and 1000
white (of course the values always depend on the specific font you use):

{ | obtained the values by shooting a screen with some generic monospace font in gedit or something, then
made a script that computed the values and ordered them. ~drummyfish }

@ 577 P 727 A 777 ? 827 / 867
W 615 w 735 Z 777 I 830 > 867
M 640 3 740 h 779 j 831 \ 867
0 641 X 741 Y 786 C 834 < 868
Q 656 D 744 [797) 836 c 870
& 658 V 745 T 797 (837 + 874
% 664 b 746 e 798 1 837 J 892
R 664 p 747 } 800 x 838 " 911
8 676 5 748 a 800 i 848 ; 912
685 d 748 { 803 z 851 _ 912
0 685 2 750] 809 r 853 ~ 924
$ 687 4 750 y 810 ~ 854 : 936
B 702 S 750 1 811 s 855 , 942
6 707 q 751 7 812 v 855 - 953
9 708 k 759 F 812 ! 856 ' 954
g 711 G 765 o 813 t 856 . 968
N 715 K 767 f 815 * 857 © 969
U 724 E 768 u 825 = 860 1000
m 727 H 771 n 826 L 866

And here are some attempts at actual ASCII art:

/ i

. (0 / "-.
I\ _ /_==-" ; .
|]e---" (| ASCII | tables |

N\) Steamer | I

IR Duck! | are | |
It |--eee- £ o= |
| the [|
| ------- L REREEEE !

ASCII Art LRS Wiki 49/895

[1 (101010011 | best | tables |
[10111] [11] | |
[111] []
[] XX XX[]
[] XXXX [1]
[111] []
(10111 [11] [>0 _ N7 ___1
[1 [ICI01001]) { PN\
[/71 {4} |
SAF FTW) S [N N /
("\/") ("\/") ("\/")
\ / \ / \ /
\ / \ / \ / KEEP IT SIMPLE
\/ \/ \/ ~~ BRUH ~~

I

| - IR

| . ' L '

|/ \ / \

| \ / \

I Ll 1 1

| LR '

I

\Y
/|_/| why is

S Lol L (. .) everyone
--{0}-- ittt {0) /\ /) so

N T T VW retarded

r__|||_' _{ /
AN\ _ _ -

/ \\ \\ o () W\

/o ______ \\ (o) 1))
Novrlsnnens/ ") ("o (1) /7
[___I_Hl___I=I=I=I=I=]=]=]=| -

N I FE R /] _)
/ I _N7_17_ 17_\N1 _1/ Il t-- H
GO 0 A G G G I s I G G Y I A O
|V N (R N [VR [AU N (VO O U N I O

- _ [___/

(O T O —

e I A T e I O 2 U I N [I

e 2 1 G G0 A I I 0 A G G I B I A
NN N N
\-" N [_| ||
(G I A 20 Y Y IO

NN Y NN

[) (1 0 N NN LN)
_.-'
The following is a raster picture auto-converted to ASCII: { For copyright clarity, it's one of my OGA pictures.
~drummyfish }

-
clxVl.
CH##X 1,
,.- -,/ac/l!,
R T N o
-l ey cle#aVits, .. .ca//cfst -, 0
';;/s/,,¢c/slc;,;/#las; ' f/c;;cVOfOf;---.s#c-
-00fLl,,,,;/,,,'LL. b, e/t exx0/. ;a0##a/, ., !, C;

ciaaas Yt /f/cta, N /e teVOV/ U/ - 0 0---
VoYYV /et #s, /e /aEL - - - - e
;X/ 5 ;¢slsac #al,,;;/,,./casl,---..lcxfs/., ., Ix#xl....-.;,/1,
- s; V... lca#t/ . - - - THVXCT##t##HES; ., . . ----- ,,;Ssa.
xx1!,,,.!,//c##l ;/cto,;c#/.;ac,.,----.,,,fs;a,
10s; ! 'c,scfa#t#tx- ---,,,,/,,. . .###x#; ., V-1, -. Lc/cfx/#f

X00s##10##f; ; , PR € A SR SR VA I

ASCII Art LRS Wiki 50/895

L Y- D ST, o AR of &V BNV AL JARE - B ol
J#c- -/, ##/;,,,,,;./,,,;lclll/ -.V##.,,,c!
JH#EY -5 0# ..U,y S x##E - J#/,,,,C;

1s#,,,,L.#f.,,,.Tf/;;;;0; ;1/s ---;#;,,;V
CUf#;, /1, ,,, ,xccees/ ac/,--xf;,,,;#
1/cflc/;.;al/; lcx!, f//--.5,,,,0
HYVIVASH L s//ti. ./
I;I//!--;;Illc !///X-,,,,f-
,fLHfFLLL., 1 /cc, AW/
1f;!;'0/,;c;l!fc -fllcle/!!, 11
////cc;LWcl/f #s/lcex;.!'/c/c.
S le--00,,) x//cf#fscf/c/f.
S VIVALNEET I i .ccl;/Vf;5,5//sf.
- fx1;#/'V/fc/ 1 ,1;;;c
- -, x.;al!/cfc

ll;/'
', /;
c,.,l/.
./10cfl!. -
#////T#,
f/fox##1.
#xf.c/!!
-c/ Ay
Y v/
st i
., lct!, (I
c,f; i
Lfl! Iflls,
; L/ 1c- ,#01cs;
WARW I, -

{ TODO: what would ASCII art made of ASCII font look like??? ~drummyfish }

The are many tools for this, but for educational purposes this one was made using the following custom C

program:
#include <stdio.h>
const char palette[] = "#0Vaxsflc/!;,.- ";
int readNum(void)
{
int r = 0;
while (1)
{

char ¢ = getchar();

if (¢ > '9' || c<'0")
break;

r=r *10 +c - '0';

}

return r;

}

void skipAfterNewline(void)

while (getchar() != '\n');
}
int main(void)
{
skipAfterNewline(); // skip magic number

)’
skipAfterNewline(); // skip header

int w
int h

readNum(); // read width
readNum(); // read height

skipAfterNewline(); // skip to pixels
for (int j = 0; j < h; ++j) // read rows

{

for (int i = 0; 1 < w; ++i) // read columns

/* The following is a bit cryptic way of reading RGB, averaging it (giving
higher significance to green, for human sight bias) to convert it to
grayscale and then getting it to range 0 to 15 (palette size). */

int v = ((getchar() + getchar() * 2 + getchar()) * 16) / (4 * 256);

putchar(palette[v]);

putchar('\n');

ASCII Art LRS Wiki

51/895

return 0;

}

This program is extremely simple, it just reads an image in PPM format on standard input and outputs the
image to terminal. Watch out, it won't work for all PPM images -- this one worked with a picture exported
from GIMP in raw RGB PPM. Also note you have to scale the image down to a very small size AND its aspect
ratio has to be highly stretched horizontally (because text characters, i.e. pixels, are much more tall than
wide). Also for best results you may want to mess with brightness, contrast, sharpness etc.

See Also

e ANSI art
¢ ASCIl animation (e.g. vt100 terminal animations, asciinema, ...)

e pixel art
e plain text
e emoticon
e cowsay

o figlet

ascii

ASCII

ASCIl (American standard code for information interchange) is a relatively simple standard for digital
encoding of text that's one of the most basic and probably the most common format used for this purpose.
For its simplicity and inability to represent characters of less common alphabets it is nowadays quite often
replaced with more complex encodings such as UTF-8 who are however almost always backwards compatible
with ASCII (interpreting UTF-8 as ASCII will give somewhat workable results), and ASCII itself is also normally
supported everywhere. ASCII is the suckless/LRS/KISS character encoding, recommended and good enough
for most programes.

The ASCII standard assigns a 7 bit code to each basic text character which gives it a room for 128 characters
-- these include lowercase and uppercase English alphabet, decimal digits, other symbols such as a question
mark, comma or brackets, plus a few special control characters that represent instructions such as carriage
return which are however often obsolete nowadays. Due to most computers working with 8 bit bytes, most
platforms store ASCII text with 1 byte per character; the extra bit creates a room for extending ASCII by
another 128 characters (or creating a variable width encoding such as UTE-8). These extensions include
unofficial ones such as VISCII (ASCIl with additional Viethamese characters) and more official ones, most
notably ISO 8859: a group of standards by ISO for various languages, e.g. ISO 88592-1 for western European
languages, 1SO 8859-5 for Cyrillic languages etc.

The ordering of characters has been kind of cleverly designed to make working with the encoding easier, for
example digits start with 011 and the rest of the bits correspond to the digit itself (0000 is 0, 0001 is 1 etc.).
Corresponding upper and lower case letters only differ in the 6th bit, so you can easily convert between
upper and lower case by negating it as letter ~ 0x20. { | think there is a few missed opportunities though,
e.g. in not putting digits right before letters. That way it would be very easy to print hexadecimal (and all
bases up to a lot) simply as putchar('0' + x). UPDATE: seen someone ask this on some stack exchange,
the answer said ASCII preferred easy masking or something, seems like there was some reason.
~drummyfish }

ASCII was approved as an ANSI standard in 1963 and since then underwent many revisions every few years.
The current one is summed up by the following table:

dec hex oct bin other symbol

000 00 000 0000000 \000 ~@ NUL: null

001 01 001 0000001 \001 ~A SOH: start of heading
002 02 002 0000010 \002 ~B STX: start of text
003 03 003 0000011 \003 ~C ETX: end of text

ASCII LRS Wiki 52/895

dec hex oct bin other symbol

004 04 004 0000100 \004 ~D EOT: end of stream
005 05 005 0000101 \005 ~E ENQ: enquiry

006 06 006 0000110 \006 ~F ACK: acknowledge
007 07 007 0000111 \a ~G BEL: bell

008 08 010 0001000 \b ~H BS: backspace

009 09 011 0001001 \t "I TAB: tab (horizontal)
010 0a 012 0001010 \n 7} LF: new line

011 Ob 013 0001011 \v ~K VT: tab (vertical)

012 Oc 014 0001100 \f ~L FF: new page

013 0d 015 0001101 \r ™M CR: carriage return
014 0e 016 0001110 \016 ~N SO: shift out

015 of 017 0001111 \017 ~O SI: shiftin

016 10 020 0010000 \020 ~P DLE: data link escape
017 11 021 0010001 \021 ~Q DC1: device control 1
018 12 022 0010010 \022 ~R DC2: device control 2
019 13 023 0010011 \023 ~S DC3: device control 3
020 14 024 0010100 \024 ~T DC4: device control 4
021 15 025 0010101 \025 ~“U NAK: not acknowledge
022 16 026 0010110 \026 ~V SYN: sync idle

023 17 027 0010111 \027 ~W ETB: end of block
024 18 030 0011000 \030 ~X CAN: cancel

025 19 031 0011001 \031 ~Y EM: end of medium
026 1a 032 0011010 \032 ~Z SUB: substitute

027 1b 033 0011011 \e [ESC: escape

028 1c 034 0011100 \034 ™\ FS: file separator
029 1d 035 0011101 \035] GS: group separator
030 1e 036 0011110 \036 ~~ RS: record separator
031 1f 037 0011111 \037 ~_ US: unit separator
032 20 040 0100000 : space

033 21 041 0100001 !

034 22 042 0100010 \" !

035 23 043 0100011 #
036 24 044 0100100 $
037 25 045 0100101 %
038 26 046 0100110 &
039 27 047 0100111V '
040 28 050 0101000 (
041 29 051 0101001)
042 2a 052 0101010 *
043 2b 053 0101011 +
044 2c 054 0101100)
045 2d 055 0101101 -
046 2e 056 0101110

047 2f 057 0101111 /
048 30 060 0110000 0
049 31 061 0110001 1

ASCII LRS Wiki 53/895

dec hex oct bin other symbol

050 32 062 0110010
051 33 063 0110011
052 34 064 0110100
053 35 065 0110101
054 36 066 0110110
055 37 067 0110111
056 38 070 0111000
057 39 071 0111001
058 3a 072 0111010
059 3b 073 0111011
060 3¢ 074 0111100
061 3d 075 0111101
062 3e 076 0111110
063 3f 077 0111111 \?
064 40 100 1000000
065 41 101 1000001
066 42 102 1000010
067 43 103 1000011
068 44 104 1000100
069 45 105 1000101
070 46 106 1000110
071 47 107 1000111
072 48 110 1001000
073 49 111 1001001
074 4a 112 1001010
075 4b 113 1001011
076 4c 114 1001100
077 4d 115 1001101
078 4e 116 1001110
079 4f 117 1001111
080 50 120 1010000
081 51 121 1010001
082 52 122 1010010
083 53 123 1010011
084 54 124 1010100
085 55 125 1010101
086 56 126 1010110
087 57 127 1010111
088 58 130 1011000
089 59 131 1011001
090 5a 132 1011010
091 5b 133 1011011
092 5¢ 134 1011100 \\
093 5d 135 1011101
094 5e 136 1011110
095 5f 137 1011111

O 00 N O U1 A~ W N

A ~-

d>i—= -~ m N < X =T < cCcH0nVIXO TO=Z2=2rXuHITomTmmMmooOow>I»xD ~V V

ASCII LRS Wiki 54/895

dec hex oct bin other symbol

096 60 140 1100000 "1 backtick
097 61 141 1100001
098 62 142 1100010
099 63 143 1100011
100 64 144 1100100
101 65 145 1100101
102 66 146 1100110
103 67 147 1100111
104 68 150 1101000
105 69 151 1101001
106 6a 152 1101010
107 6b 153 1101011
108 6¢c 154 1101100
109 6d 155 1101101
110 6e 156 1101110
111 6f 157 1101111
112 70 160 1110000
113 71 161 1110001
114 72 162 1110010
115 73 163 1110011
116 74 164 1110100
117 75 165 1110101
118 76 166 1110110
119 77 167 1110111
120 78 170 1111000
121 79 171 1111001
122 7a 172 1111010
123 7b 173 1111011
124 7c¢ 174 1111100
125 7d 175 1111101 }

126 7e 176 1111110 ~

127 7f 177 1111111\177 ~? DEL

See Also

AN X = < ©c 0 50 T O S5 83 ~ XV JTQ 0D Q0 T QO

e Unicode

e PETSCII

e ATASCII

e ASCIl art

* baseb4

e Morse code

assembly

Assembly

Assembly (also ASM) is, for any given hardware computing platform (ISA, basically a CPU architecture), the
lowest level programming language that expresses typically a linear, unstructured (i.e. without nesting
blocks of code) sequence of CPU instructions -- it maps (mostly) 1:1 to machine code (the actual binary CPU

Assembly LRS Wiki 55/895

instructions) and basically only differs from the actual machine code by utilizing a more human readable
form (it gives human friendly nicknames, or mnemonics, to different combinations of 1s and 0s). Assembly is
converted by assembler into the the machine code, something akin a computer equivalent of the "DNA", the
lowest level instructions for the computer. Assembly is similar to bytecode, but bytecode is meant to be
interpreted or used as an intermediate representation in compilers while assembly represents actual native
code run by hardware. In ancient times when there were no higher level languages (like C or Fortran)
assembly was used to write computer programs -- nowadays most programmers no longer write in assembly
(majority of zoomer "coders" probably never even touch anything close to it) because it's hard (takes a long
time) and not portable, however programs written in assembly are known to be extremely fast as the
programmer has absolute control over every single instruction (of course that is not to say you can't fuck up
and write a slow program in assembly).

Assembly is NOT a single language, it differs for every architecture, i.e. every model of CPU has
potentially different architecture, understands a different machine code and hence has a different assembly
(though there are some standardized families of assembly like x86 that work on wide range of CPUs);
therefore assembly is not portable (i.e. the program won't generally work on a different type of CPU or
under a different QS)! And even the same kind of assembly language may have several different syntax
formats that also create basically slightly different languages which differ e.g. in comment style, order of
writing arguments and even instruction abbreviations (e.g. x86 can be written in Intel or AT&T syntax). For
the reason of non-portability (and also for the fact that "assembly is hard") you mostly shouldn't write your
programs directly in assembly but rather in a bit higher level language such as C (which can be compiled to
any CPU's assembly). However you should know at least the very basics of programming in assembly as a
good programmer will come in contact with it sometimes, for example during hardcore gptimization (many
languages offer an option to embed inline assembly in specific places), debugging, reverse engineering,
when writing a C compiler for a completely new platform or even when designing one's own new platform
(you'll probably want to make your compiler generate native assembly, so you have to understand it). You
should write at least one program in assembly -- it gives you a great insight into how a computer
actually works and you'll get a better idea of how your high level programs translate to machine code (which
may help you write better optimized code) and WHY your high level language looks the way it does.

OK, but why doesn't anyone make a portable assembly? Well, people do, they just usually call it a
bytecode -- take a look at that. C is portable and low level, so it is often called a "portable assembly”, though
it still IS significantly higher in abstraction and won't usually give you the real assembly vibes. Forth may also
be seen as close to such concept. ACTUALLY Dusk OS has something yet closer, called Harmonized Assembly
Laver (see https://git.sr.ht/~vdupras/duskos/tree/master/fs/doc/hal.txt). Web assembly would also probably
fit the definition.

The most common assembly languages you'll encounter nowadays are x86 (used by most desktop CPUs)
and ARM (used by most mobile CPUs) -- both are used by proprietary hardware and though an assembly
language itself cannot (as of yet) be copyrighted, the associated architectures may be "protected"
(restricted) e.g. by patents (see also |IP cores). RISC-V on the other hand is an "open" alternative, though not
yet so wide spread. Other assembly languages include e.g. AVR (8bit CPUs used e.g. by some Arduinos) and
PowerPC.

To be precise, a typical assembly language is actually more than a set of nicknames for machine code
instructions, it may offer helpers such as macros (something akin the C preprocessor), pseudoinstructions
(commands that look like instructions but actually translate to e.g. multiple instructions), comments,
directives, automatic inference of opcode from operands, named labels for jumps (as writing literal jump
addresses would be extremely tedious) etc. l.e. it is still much easier to write in assembly than to write pure
machine code even if you knew all opcodes from memory. For the same reason remember that just replacing
assembly mnemonics with binary machine code instructions is not yet enough to make an executable
program! More things have to be done such as linking libraries and converting the result to some executable
format such as elf which contains things like header with metainformation about the program etc.

How will programming in assembly differ from your mainstream high-level programming? Quite a
lot, assembly is extremely low level, so you get no handholding or much programming "safety" (apart from
e.g. CPU operation modes), you have to do everything yourself -- you'll be dealing with things such as
function call conventions, interrupts, syscalls and their conventions, counting CPU cycles of individual
instructions, looking up exact hexadecimal memory addresses, opcodes, defining memory segments, dealing
with endianness, raw goto jumps, call frames etc. You have no branching (if-then-else), loops or functions,

Assembly LRS Wiki 56/895

you make these yourself with gotos. You can't write expressions like (a + 3 * b) / 10, no, you have to
write every step of how to evaluate this expression using registers, i.e. something like: load a to register A,
load b to register B, multiply B by 3, add register B to A, divide A by 10. You don't have any data types, you
have to know yourself that your variables really represent signed values so when you're dividing, you have to
use sighed divide instruction instead of unsigned divide -- if you mess this up, no one will tell you, your
program simply won't work. And so on.

Typical Assembly Language

Assembly languages are usually unstructured, i.e. there are no control structures such as if or while
statements: these have to be manually implemented using labels and jump (goto, branch) instructions. There
may exist macros that mimic control structures. The typical look of an assembly program is however still a
single column of instructions with arguments, one per line, each representing one machine instruction.

In assembly it is also common to blend program instructions and data, i.e. sometimes you create a label after
which you just put bytes that will represent e.g. text strings or images and after that you start to write
program instructions that work with these data, which will likely physically be placed this way (after the data)
in the final program. This may cause quite nasty bugs if you by mistake jump to a place where data reside
and try to treat them as instructions.

The working of the language reflects the actual hardware architecture -- most architectures are based on
reqgisters so usually there is a small number (something like 16) of registers which may be called something
like RO to R15, or A, B, C etc. Sometimes registers may even be subdivided (e.g. in x86 there is an eax 32bit
register and half of it can be used as the ax 16bit register). These registers are the fastest available memory
(faster than the main RAM memory, they are literally INSIDE the CPU, even in front of the cache) and are
used to perform calculations. Some registers are general purpose and some are special: typically there will
be e.g. the FLAGS register which holds various 1bit results of performed operations (e.g. overflow, zero result
etc.). Some instructions may only work with some registers (e.g. there may be kind of a "pointer" register
used to hold addresses along with instructions that work with this register, which is meant to implement
arrays). Values can be moved between registers and the main memory (with instructions called something
like move, load or store).

Writing instructions works similarly to how you call a function in high level language: you write its name and
then its arguments, but in assembly things are more complicated because an instruction may for example
only allow certain kinds of arguments -- it may e.g. allow a register and immediate constant (kind of a
number literal/constant), but not e.g. two registers. You have to read the documentation for each instruction.
While in high level language you may write general expressions as arguments (like myFunc(x + 2 *
y,myFunc2())), here you can only pass specific values.

There are also no complex data types, assembly only works with numbers of different size, e.g. 16 bit
integer, 32 bit integer etc. Strings are just sequences of numbers representing ASCII values, it is up to you
whether you implement null terminated strings or Pascal style strings. Pointers are just numbers
representing addresses. It is up to you whether you interpret a number as signed or unsigned (some
instructions treat numbers as unsigned, some as signed, some don't care because it doesn't matter).

Instructions are typically written as three-letter abbreviations and follow some unwritten naming conventions
so that different assembly languages at least look similar. Common instructions found in most assembly
languages are for example:

* MOV (move): move a number between registers and/or main memory (RAM).

¢ JMP (jump, also e.g. BRA for branch): unconditional jump to far away instruction.

¢ JEQ (jump if equal, also BEQ etc.): jump if result of previous comparison was equality.

¢ ADD (add): add two numbers.

* NOP (no operation): do nothing (used e.qg. for delays or as placeholders).

e CMP (compare): compare two numbers and set relevant flags (typically for a subsequent conditional
jump).

Fun note: HCF -- halt and catch fire -- is a humorous nickname for instructions that just stop the CPU and wait
for restart.

Assembly LRS Wiki 57/895

How To
For specific assembly language how tos see their own articles: x86, Arm etc.

On Unices the objdump utility from GNU binutils can be used to disassemble compiled programs, i.e view
the instructions of the program in assembly (other tools like ndisasm can also be used). Use it e.g. as:

objdump -d my compiled program

Let's now write a simple Unix program in 64bit x86 assembly -- we'll be using AT&T syntax that's used by
GNU. Write the following source code into a file named e.g. program.s:

.global start # include the symbol in object file
str:
.ascii "it works\n" # the string data
.text
_start: # execution starts here
mov $5, %rbx # store loop counter in rbx
.loop:

make a Linux "write" syscall:

args to syscall will be passed in regs.
mov $1, Srax # says syscalls type (1 = write)
mov $1, %Srdi # says file to write to (1 = stdout)
mov $str, %rsi # says the address of the string to write
mov $9, %rdx # says how many bytes to write
syscall # makes the syscall
sub $1, %rbx # decrement loop counter
cmp $0, %rbx # compare it to 0
jne . loop # if not equal, jump to start of the loop

make an "exit" syscall to properly terminate:

mov $60, %rax # says syscall type (60 = exit)
mov $0, %Srdi # says return value (0 = success)
syscall # makes the syscall

The program just writes out it works five times: it uses a simple loop and a Unix system call for writing a
string to standard output (i.e. it won't work on Windows and similar shit).

Now assembly source code can be manually assembled into executable by running assemblers like as or
nasm to obtain the intermediate object file and then linking it with 1d, but to assemble the above written
code simply we may just use the gcc compiler which does everything for us:

gcc -nostdlib -no-pie -o program program.s
Now we can run the program with

./program
And we should see

it works
it works
it works
it works
it works

As an exercise you can objdump the final executable and see that the output basically matches the original

source code. Furthermore try to disassemble some primitive C programs and see how a compiler e.g. makes
if statements or functions into assembly.

Assembly LRS Wiki 58/895

Example

Let's take the following C code:

#include <stdio.h>

char incrementDigit(char d)

{

return // remember this is basically an if statement

d>="'0"'&& d < '9"'"?
d+1:
I?I;

}

int main(void)

{

char ¢ = getchar();

putchar(incrementDigit(c));

return 0;

}

We will now compile it to different assembly languages (you can do this e.g. with gcc -S my program.c).
This assembly will be pretty long as it will contain boilerplate and implementations of getchar and putchar
from standard library, but we'll only be looking at the assembly corresponding to the above written code.
Also note that the generated assembly will probably differ between compilers, their versions, flags such as
optimization level etc. The code will be manually commented.

{ I used this online tool: https://godbolt.org. ~drummyfish }

{ Also not sure the comments are 100% correct, let me know if not. ~drummyfish }

The x86 assembly may look like this (to understand the weird juggling of values between registers see

calling conventions):

incrementDigit:
pushq %rbp
movq %rsp, Srbp

mov 1 %edi, %eax
movb %al, -4(%rbp)
cmpb $47, -4(%rbp)

jle .L2
cmpb $56, -4(%rbp)
ig L2
movzbl -4(%rbp), %eax
addl $1, %eax
jmp .L4
.L2:
movl $63, %eax
.L4:
popq %Irbp
ret
main:
pushq %rbp
movq %rsp, Srbp

subq $16, %rsp

call getchar

movb %al, -1(%rbp)
movsbl -1(%rbp), %eax
movl %eax, %edi
call incrementDigit

movsbl %al, %eax
movl %eax, %edi
call putchar
mov 1 $0, %eax
leave

ret

Assembly

H R H KR HHHHHR

HHH R R HB

H* #*

save base pointer

move base pointer to stack top
move argument to eax

and move it to local var.
compare it to 'O’

if <=, jump to .L2

else compare to '9'

if >, jump to .L4

else get the argument

add 1 to it

jump to .L4

move '?' to eax (return val.)

restore base pointer

save base pointer

move base pointer to stack top
make space on stack

push ret. addr. and jump to func.
store return val. to local var.
move with sign extension

arg. will be passed in edi

sign extend return val.
pass arg. in edi again

values are returned in eax

LRS Wiki

59/895

The ARM assembly may look like this:

incrementDigit:
sub sp, sp, #16
strb w0, [sp, 15]
ldrb w0, [sp, 15]
cmp w0, 47
bls L2
ldrb w0, [sp, 15]
cmp wO, 56
bhi L2
ldrb w0, [sp, 15]
add w0, wO, 1
and w0, w0, 255
b .L3

.L2:
mov wO, 63

.L3:
add sp, sp, 16
ret

main:
stp x29, x30, [sp, -32]!
mov x29, sp
bl getchar
strb w0, [sp, 31]
ldrb w0, [sp, 31]
bl incrementDigit
and w0, w0, 255
bl putchar
mov wO, 0O
1dp x29, x30, [spl, 32
ret

The RISC-V assembly may look like this:

incrementDigit:
addi sp,sp,-32
sw s0,28(sp)
addi s0,sp,32
mv a5,a0
sb a5,-17(s0)
lbu a4,-17(s0)
1i a5,47
bleu a4,a5,.L2
lbu a4,-17(s0)
1i a5,56
bgtu a4,a5, .L2
lbu a5,-17(s0)
addi a5,a5,1
andi a5,a5,0xff
j .L3

.L2:
1i a5,63

.L3:
mv a0,a5
lw s0,28(sp)
addi sp,sp,32
jr ra

main:
addi sp,sp,-32
sw ra,28(sp)
sw s0,24(sp)
addi s0,sp,32
call getchar
mv a5,a0
sb a5,-17(s0)
1lbu a5,-17(s0)
mv a0,a5
call incrementDigit

Assembly

//

//

//

//
//

H R W R H* HHEHFHHFEHHFHFHFHFRFHEHRHE

H R W R

H R H R

make room on stack

load argument from wd to local var.

load back to w0
compare to '0Q'
branch to .L2 if <
load argument again
compare to '9'
branch to .L2 if >=
load argument again

add

1 to it

to w0

to wO

mask out lowest byte
branch to .L3

set w0 (ret. value) to

1

shift stack pointer back

shift stack and store x regs

store wO (ret. val.) to local var.

load it back to w0

mask out lowest byte

set

ret. val. to 0

restore x regs

shift stack (make room)

save

frame pointer

shift frame pointer
get arg. from a@ to a5
save to to local var.
get it to a4

load '0' to a4

branch to .L2 if a4 <= a5

load arg. again
load '9' to a5

branch to .L2 if a4 > a5

load arg. again

add 1 to it
mask out the lowest byte
jump to .L3

load '?'

move result to ret. val.
restore frame pointer

pop stack

jump to addr in ra

shift stack (make room)

store ret.

store stack frame pointer on stack

addr on stack

shift frame pointer

copy return val. to a5

move a5 to

local var

load it again to a5

move it to

a0 (func. arg.)

LRS Wiki

60/895

mv a5,a0 # copy return val. to a5

mv a0,a5 # get it back to a0 (func. arg.)
call putchar

1i a5,0 # load 0 to a5

mv a0,a5 # move it to a0 (ret. val.)

w ra,28(sp) # restore return addr.

w s0,24(sp) # restore frame pointer

addi sp,sp,32 # pop stack

jr ra # jump to addr in ra

assertiveness

Assertiveness

Assertiveness is an euphemism for being a dick.

atan

Arcus Tangent

Arcus tangent, written as atan or tan”-1, is the inverse function to the tangent function. For given argument
X (any real number) it returns a number y (from -pi/2 to pi/2) such that tan(y) = x.

Approximation: Near 0 atan(x) can very rougly be approximated simply by x. For a large argument atan(x)
can be approximated by pi/2 - 1/x (as atan's limit is pi/2). The following formula { created by me
~drummyfish } approximates atan with a poylnomial for non-negative argument with error smaller than 2%:

atan(x) ~= (x * (2.96088 + 4.9348 * x))/(3.2 + 3.88496 * x + pi * x"~2)

Iy
pi/2 +
| I
[_
| 1
----------- A e+ -> X
.'1e1 2 3 4 5
_- |
I
pi/2 +
|
plot of atan(x)
atheism
Atheism
"In this moment | am euphoric ..." --some retarded atheist

An atheist is someone who doesn't believe in god or any other similar supernatural beings. An especially
annoying kind is the reddit atheist who will DESTROY YOU WITH FACTS AND LOGIC”(TM) while managing
to throw around le 42 jokes. These atheists are 14 year old children who think they've discovered the secret
of the universe and have to let the whole world know they're atheists who will destroy you with their 200 1Q
logic and knowledge of all 10 argument logic fallacies, while in fact they reside at the mount stupid and
many times involuntarily appear on other subreddits such as r/fiamverysmart and r/cringe. They masturbate

that religion is literally Hitler (oh noes, reduction to HITLER has been committed, game over). They love to
write or even read the "rational” wiki. They like to pick easy targets such as flatearthers and cyberbully them
on YouTube with the power of SCIENCE and their enormously large thesaurus (they will never use a word
that's among the 100000 most common English words). They are so cringe you want to kill yourself, but their
discussions are sometimes entertaining to read with a bowl of popcorn.

Atheism LRS Wiki 61/895

Such a specimen of atheist is one of the best quality examples of a pseudosceptic. See also this:
https://www.debunkingskeptics.com/Contents.htm.

On a bit more serious note: we've all been there, most people in their teens think they're literal Einsteins and
then later in life cringe back on themselves. However, some don't grow out of it and stay arrogant, ignorant
fucks for their whole lives. The principal mistake of the stance they retain is they try to apply "science" (or
whatever it means in their world) to EVERYTHING and reject any other approach to solving problems -- of
course, science (the real one) is great, but it's just a tool, and just like you can't fix every problem with a
hammer, you can't approach every problem with science. In your daily life you make a million of unscientific
decisions and it would be bad to try to apply science to them; you cross the street not because you've read a
peer-reviewed paper about it being the most scientifically correct thing to do, but because you feel like doing
it, because you believe the drivers will stop and won't run you over. Beliefs, intuition, emotion,
non-rationality and even spirituality are and have to be part of life, and it's extremely stupid to oppose these
concepts just out of principle. With that said, there's nothing wrong about being a well behaved man who just
doesn't feel a belief in any god in his heart, just you know, don't be an idiot.

Among the greatest minds it is hard to find true atheists, even though they typically have a personal and not
easy to describe faith. Newton was a Christian. Einstein often used the word "God" instead of "nature" or
"universe"; even though he said he didn't believe in the traditional personal God, he also said that the laws of
physics were like books in a library which must have obviously been written by someone or something we
can't comprehend. Nikola Tesla said he was "deeply religious, though not in the orthodox sense". There are
also very hardcore religious people such as Larry Wall, the inventor of Perl language, who even planned to be
a Christian missionary. The "true atheists" are mostly second grade "scientists" who make career out of the
pose and make living by writing books about atheism rather than being scientists.

See Also

* stupidity

attribution

Attribution

In the world of intellectual works (such as programs, texts, images etc.) attribution means visibly and
properly acknowledging the work of collaborators, i.e. usually mentioning the names or pseudonyms of
others that somehow took part in creation of the work. Sometimes we distinguish between merely giving
credit, i.e. just recording collaborators somewhere, even in a less visible place such as some documentation
file, and proper attribution which may have further conditions, e.g. mentioning the authors in a visible place
(e.g. game's main menu) along with a link to their website and so on. Attribution is something that's often a
condition of a license, i.e. for example the Creative Commons Attribution (CC BY) license grants everyone
rights to the work as long as the original author is properly attributed. However we at LRS see such license
requirements as harmful; forcing attribution with a license is a very bad idea! Never do it. Please
consider the following:

¢ Forcing attribution may cause practical problems and make your work unusable. While it's no issue to
give proper attribution to one guy who made music for your game, consider also a different scenario:
e.g. in development of LMMS, a FOSS music making program, the authors had to collect hundreds of
short sound samples for their virtual instruments -- here they couldn't use CC BY-SA samples because
doing so would require anyone who made music with their program to also carry on proper attribution
of all the author of every single sample that was used in the music, which is practically almost
impossible.

¢ Forcing attribution can make you be force singed under things you don't want to be signed under.
Consider you make a comics for children and license it CC BY-SA, i.e. require attribution. By free
culture principles someone can take the characters from your story and make porn or terrorist
supporting videos with them and even if those guys knew you wouldn't want to be signed under this
(because you e.g. made it clear on your blog that you hate porn and terrorism) and even if they would
be willing to not name you, your license will force them to write your name PROPERLY, i.e. visibly,
under the thing they make.

Attribution LRS Wiki 62/895

e You're still playing the copyright game -- even if you relax copyright, you still acknowledge of the idea
you keep some basic rights and have to enforce a "correct use" of your work. Even if the difference
between CCO and CC BY was practically of small importance, your mindset will likely be very different
with each of them. There is a pattern of people who use CCO being completely cool while the "CC
BY-SA" people oftentimes changing their mind, trying to make trouble with "moral rights" and so on.
Just don't do this.

o It is just legal bloat, it created friction, distract artists. It is unnecessary. Even if it's a small burden, it's
still a burden for everyone -- the license has to be longer, it has to define what proper attribution
means, what happens if it can't be technically achieved etc. You have to keep one more thing in your
working memory, you have to observe if people respect this condition etc.

¢ [t discourages many from using your work. For some of the mentioned reasons many people actually
avoid reusing works that require attribution { Including me and many other people | know.
~drummyfish }. There exist dangers like attribution getting unintentionally lost in some copy paste by
which you start violating the license, people are aware of this danger so they firstly look for works
with no conditions at all, just to be safer. By releasing your work without requiring attribution you
usually get "extra points" from the free culture community for saving other headaches and trouble.

¢ You will almost certainly be attributed even if you don't force it. People naturally credit others and
there is basically no reason not to, it's in everyone's interest. In practice many people use
licenses/waiver that don't force attribution and basically no "abuse" of this is seen -- firstly people are
culturally very strongly taught to always attribute others and socially rewarded for doing so, but
secondly it doesn't even make any sense to try to come up with any "abuse"”, there isn't a way to
abuse this -- imagine someone wanted to take credit on social media for some work he didn't make: it
would sooner or later be found he didn't make the work anyway -- the original author would comment
or it would show the guy is incapable of producing more similar works etc., and this can be confirmed
on the Internet by digging and finding the work posted previously by someone else. So the guy would
just forever mark himself as a scammer, people just don't even try this. AND even if this happens --
e.g. with some nasty copycat Chinese scammers -- they just blatantly "steal" the work no matter the
license, they literally don't care about licenses, they steal even proprietary Hollywood movie
characters, license doesn't do anything here. { I've been using exclusively CCO (which doesn't require
credit) for many years and literally never encountered a single case when someone wouldn't credit
me, nor have | heard of any malicious attempts at abusing this anywhere. ~drummyfish }

See Also

e copyleft
*NC
*ND

audiophilia

Audiophilia

Audiophilia is a mental disorder, similar to other diseases such as distrohopping and chronic ricing, that
makes one scared of low or normal quality audio. Audiophiles are scared of lossy compression and so harm
society by wasting storage space. Audiophilia, similarly to e.g. the business with mechanical keyboards, is
the astrology of technology, it is an arbitrarily invented bullshit business creating an artificial need that
makes people wanna buy golden cables and similar shit in belief that it will make their life happier,
perpetuation consumerism and capitalism.

autostereogram

Autostereogram

Autostereogram is a cool sort of image that when viewed in a special way (with eyes crossed or "walled")
enables the viewer to see a 3D structure within it by cheating human stereoscopic vision (it is therefore in a
sense also an optical illusion). As the name suggests it is a special case of stereogram but unlike many
traditional stereograms consisting of two side by side images, autostereogram is only a single image that

Autostereogram LRS Wiki 63/895

forms the perceivable 3D pattern by being overlaid with itself (hence the prefix auto). These images are
quite awesome for they implement stereoscopic 3D images without the need for special glasses or complex
techniques like autostereoscopy or holography -- autostereograms can be made as long as we can draw plain
2D images, but of course they also suffer from some limitations. There are several types of autostereograms.

Viewing autostereograms is easy for some and difficult for others but don't worry, it can be trained. One trick
that's used (for the "cross eyed" types of images) is putting a finger in front of the image, focusing your sight
on it and then lowering the finger while keeping your eyes looking at the point where the finger was (for
"walled" images you have to be looking beyond the image, i.e. try looking at a wall behind it). Also be careful
about the possibility of crossing your eyes "too much" and seeing the image in incorrect way. Once you see
the pattern, keep looking at it for a longer time, it becomes clearer and clear as the brain makes out more of
the structure (it may also help to slightly move your head from side to side).

TODO

Random Dot Autostereograms

The "random dot" technique gives rise to an especially interesting type of autostereogram -- one whose
creation can easily be automatized with a program and which lets us embed any depth image (or heightmap)
into an image that consists of some repeating base pattern. And yes, it can even be animated! The pattern
image may in theory be anything, even a photo, but it should have great variety, high frequencies and big
contrast to work properly, so the typical pattern is just randomly generated color dots. This pattern is then
horizontally deformed according to the embedded depth image. A disadvantage is, of course, that we can
only embed the depth image, we cannot give it any texture.

TODO: more detail

L, OX#r-"'/=*miQ L, oX#r-'/=*miQ .:,oX#r-'/=*miQ .:,oX#r-'/=*miQ .:,oX#r-'/=*miQ .:,oX#r-'/=*miQ
miQ)35; Op]w@x4EmiQ)35; Op]lw@x4EmiQ)35; Oplw@x4EmiQ)35; Op]lw@x4EmiQ)35; Oplw@x4EmiQ)35; Op]w@x4E
XAEY!{ .:,oX#r-"x4EY!{ .:,oX#r-"xX4EY!{ .:,oX#r-"'x4EY!{ .:,oX#r-"'x4EY!{ .:,oX#r-"'x4EY!{ .:, oX#r-'
r-'/=*miQ)35; Opr'/=*miQ)35; 00pr'/=*miQ)35; 00pr'/=*miQ)35; 00pr'/=*miQ)35; 00pr'/=*miQ)35; 00p
_Oplwex4EY!{ .:, OJw@x4EY!{ ..:, OJw@x4EY!..:, OJw@x4EY!..:.:, OJw@x4EY!..:.:, O]Jw@x4EY!..:.:, O
L, OX#r-"'/=*miQ) . i, 0#r-"'/=**miQ) . :,o#r-"'/=*iQ) .:,o#r-"'/=*iQ).).:,0#r-"'/=*iQ.).:,o#r-"'"'/=*iQ).).:
iQ)35; Op]w@x4EYiQ)3; Op]lw@ex4EYiQ)3; Op]w@@EYiQ)3;3; Ow@QEYiQiQ)3;3; Ow@EYiQiQ)3;3; OwE@QEYYiQiQ

AEY!'{ .:,0X#r-"'/4EY! .:,oX##r-"'/AEY! . :,oX##'/AEY! | [, ##'/AE4AEY! | | ##'/AEA4EY! | ##''//4EAE
-'/=*miQ)35;_0Op]-'/=miQ)35;; 0pl-'/=miQ)35;;p]l-'/=m=miQ);;pl-'-'/=m=mi);;pl-'"'-"'/=m=1);;p]]1]-"-"
OpIw@x4EY!{ .:,00plwx4EY!{ .:,00plwx4EY!{ ,00plwxwx4!{ ,0000p]Jwxwx4{ ,00000p]wxwx4{ ,00000p

1, 0X#r-"'/=*miQ)3:,0Xr-"'/=*mmiQ)3:,0Xr-"'/=*mm)3:,0Xr-"'/=*mm)3)3:,0Xr-"'/=*m)3)3:,0Xr-"'"'/=*m)33)3:,
Q)35; Oplw@x4EY!Q)35 Oplw@xx4EY!Q)350pplw@xxY!Q)350pplw@xxY!Y!Q)350ppIw@xxY!!Q)350pplw@xxxY!Y!Q)
EY!'{ .:,oX#r-"'/=EY!{.:,0X#rr-"/=EY!{:,,oX#rr/=EY'{:{:, ,#rr/=E=EY'{:{:, ,#rr/=E=EY{:{:, ,#rrr/=E=EY
'/=*miQ)35; Oplw'/=*1Q)35; Oplw'/*iQ))35; Jw'/*iQiQ))3 Iw'/'/*iQi))3 Tww'/'/*1ii))3 Jwww'/'/
PIw@x4EY!{ .:,oXpIwx4EY!{ .:,0Xplwx4EYY!{ .:Xpplx4E4EYY!{:Xppl]l1x4E4YY!{:Xpppl]l1x4EYY!{:Xppppll]
, OX#r-"/=*miQ) 35, 0#r-"'/=*miQ) 35, o#r-'//=*miQ5, ,or-"/"'//=*Q5, ,00#r-"'/'/=*Q5, ,000#r-/"'/=*Q5,,, ,00#
)35; Oplw@x4EY!{)35; Oplw@x4EY!{)35; OplwaxY!{)35; OpoplwY!{)3)3 ; Op0lwY!{)3)35; 0polwY!!{{)3)3
YU{ o, oX#r-"/=XYI{ i oX#r-" /=XYYL L oX#rr- /=XYYL L oXdr- /=YL L oXr- /=Y Ly, oXr- - /=R
/=*miQ)35; 0plw@/=*miQ)35; Oplw@/=*miQ)35; Op]w@/=*miQ)35; Oplw@/=*miQ)35; Oplw@/=*miQ)35; Op]w@
Jw@x4EY!{ .:,oX#]w@x4EY!{ .:,oX#]w@x4EY!{ .:,oX#]w@x4EY!{ .:,oX#]w@x4EY!{ .:,oX#]w@x4EY!{ .:,6 oX#

If you look at this image the correct way, you'll see a 3D image of big letters spelling out LRS. Please forgive
an increased viewing difficulty of ASCIl art as compared to a true bitmap image.

The following is a C program that generates the above image.

#include <stdio.h>

#define PATTERN_SIZE 16
#define RES X 75

#define RES_Y 20

#define PATTERN_SEED_SIZE 32

char patternSeed[PATTERN SEED SIZE] = " .:,oX#r-'/=*miQ)35; Op]w@x4EY!{";

char depth[RES X * RES Y + 1] = // must be big and simple to be easily seen

Autostereogram LRS Wiki 64/895

" 1111111111111

" 11111111111

" 1111111

" 1111111

! 1111111

" 1111111

" 1111111

! 1111111

" 1111111 11
" 1111111 11
! 1111111 1111
" 1111111111111111111
“ 11111111111111111111

22222222222222222
222222222222222222
2222222 2222222
2222222 222222
2222222 222222
2222222 2222222
2222222222222222
2222222222222222
2222222 222222
2222222 222222
2222222 222222
22222222 2222222
2222222222 22222222

char bufferl[PATTERN SIZE + 1];
char buffer2[PATTERN SIZE + 1];

int charToDepth(char c)
{

}

return c="'""'?20: (c -

int main(void)

{

const char *c = depth;

|0|);

char *lineCurrent, *linePrev;

bufferl[PATTERN_SIZE]
buffer2[PATTERN SIZE]

for (int j = 0; j < RES
{

for (int i =

bufferl[i]

lineCurrent = bufferl;

linePrev = buffer2;

0;
0;

_Y; ++])

for (int i = 0; 1 < RES_X; ++i)

{

if (i % PATTERN SIZE == 0)

{

1111111
1111111
11111111

1111111111
1111111111111111
11111111 111111

1111111 111111

11111111
111111111111
111111111111
111111111

1111111111111111111
1111111111111

0; 1 < PATTERN SIZE; ++i) // initiate first pattern from seed
= patternSeed[(i + (j * 13)) % PATTERN SEED SIZE];

printf("%s",lineCurrent); // print the rendered line

char *tmp = lineCurrent;

lineCurrent = linePrev;

linePrev = tmp;

}

// swap previous and current buffer

lineCurrent[i % PATTERN SIZE] = // draw the offset pixel
linePrev[(PATTERN SIZE + i + charToDepth(*c)) % PATTERN SIZE];

C+t;

}

printf("%ss\n",lineCurrent); // print also the last buffer

}

return 0;

}

11111111
1111111
11111111

autoupdate

Autostereogram

LRS Wiki

65/895

Autoupdate

Autoupdate is a malicious software feature that frequently remotely modifies software on the user's device
without asking, sometimes silently and many times in a forced manner without the possibility to refuse this
modification (typically in proprietary software). This is a manifestation of update culture. These remote
software modifications are called "updates" to make the user think they are a good thing, but in fact they
usually introduce more bugs, bloat, security vulnerabilities, annoyance (forced reboots etc.) and malware
(even in "open source", see e.g. the many projects on GitHub that introduced intentional malware targeted at
Russian users during the Russia-Ukraine war).

avpd

Avoidant Personality Disorder

Avoiding the problem is in majority of cases the best solution to the problem.

Avoidant Personality Disorder (AVPD) is one of the great myriad of psychological personality "disorders"
that's basically characterized by extreme shyness, social isolation and tendency to solve everything by
avoidance -- people with this thing have no friends, social life, they isolate, don't go out, don't go to work
(that's good), they constantly think about how they're judged by others, may try to adjust personality
according to what the other people around seem to want etc. It could possibly be seen as the hardcore
minimalist disease, AVPD positives just minimize their life to the a bare minimum of things they can't avoid,
like eating, breathing etc. Of course this goes with anxiety, panic attacks and depression, sometimes self
harm and so on.

axiom_of _choice

Axiom Of Choice

In mathematics (specifically set theory) axiom of choice is a possible axiom which basically states we can
arbitrarily choose elements of sets and which is famous for being controversial and problematic because it
causes trouble both when we accept or reject it. Now it's actually been included in ZEC, a kind of "commonly
used base for mathematics", but its controversial nature stands. Note that this topic can go to a great depth
and lead to philosophical debates, there is a huge rabbit hole and mathematicians can talk about this for
hours; here we'll only state the very basic and quite simplified things, mostly for those who aren't
professional mathematicians but need some overview of mathematics (e.g. programmers).

Indeed, what really IS the axiom of choice? It is an axiom, i.e. something that we can't prove but can
either accept or reject as a basic fact so that we can use it to prove things. Informally it says that given any
collection of sets (even an infinite collection of infinitely large sets), we can make an arbitrary selection of
one element from each set. More mathematically it says: if we have a collection of sets, there always exists a
function f such that for any set S from the collection f(S) is an element of S.

This doesn't sound weird, does it? Well, in many normal situations it isn't. For example if we have finitely
many sets, we can simply write out each element of the set, we don't need to define any selection function,
so we don't need axiom of choice to make our choice of elements here. But also if we have infinitely many
sets that are well ordered (we can compare elements), for example infinitely many sets of natural numbers,
we can simply define a function that takes e.g. the smallest number from each set -- here we don't need
axiom of choice either. The issues start if we have e.g. infinitely many sets of real numbers (which can't be
well ordered without the axiom of choice, consider that e.g. open intervals don't have lowest number) -- here
we can't say how a function should select one element from each set, so we have to either accept axiom of
choice (we say it simply can be done "somehow", e.g. by writing each element out on an infinitely large
paper) or reject it (we say it can't be done). Here it is again the case that what's normally completely
non-problematic starts to get very weird once you involve infinity.

Why is it problematic? Once you learn about axiom of choice, your first question will probably be why
should it pose any problems if it just seems like an obvious fact. Well, it turns out it leads to strange things. If

Axiom Of Choice LRS Wiki 66/895

we accept axiom of choice, then some weird things happen, most famously e.g. the Banach-Tarski paradox
which uses the axiom of choice to prove that you can disassemble a sphere into finitely many pieces, then
move and rotate them so that they create TWO new spheres, each one identical to the original (i.e. you
duplicate the original sphere). But if we reject the axiom of choice, other weird things happen, for example
we can't prove that every vector space has a basis -- it seems quite elementary that every vector space
should have a basis, but this can't be proven without the axiom of choice and in fact accepting this implies
the axiom of choice is true. Besides this great many number of proofs simply don't work without axiom of
choice. So essentially either way things get weird, whether we accept axiom of choice or not.

So what do mathematicians do? How do they deal with this and why don't they kill themselves? Well, in
reality most of them are pretty chill and don't really care, they try avoid it if they can (their proof is kind of
stronger if it relies on fewer axioms) but they accept it if they really need it for a specific proof. Many
elementary things in mathematics actually rely on axiom of choice, so there's no fuss when someone uses it,
it's very normal. Turns out axiom of choice is more of something they argue over a beer, they usually
disagree about whether it is INTUITIVELY true or false, but that doesn't really affect their work.

backgammon

Backgammon

Backgammon is an old, very popular board game of both skill and chance (dice rolling) in which players race
their stones from one side of the board to the other. It often involves betting (but can also be played without
it) and is especially popular in countries of Near East such as Egypt, Syria etc. (where it is kind of what chess
is to our western world or what shogi and go are to Asia). It is a very old game whose predecessors were
played by old Romans and can be traced even as far as 3000 BC. Similarly to chess, go, shogi and other
traditional board games backgammon is considered by us to be one of the best games as it is owned by no
one, highly free, cheap, simple yet deep and entertaining and can be played even without a computer, just
with a bunch of rocks; compared to the other mentioned board games backgammon is unique by involving
an element of chance and being only played on 1 dimensional board; it is also relatively simple and therefore
noob-friendly and possibly more relaxed (if you lose you can just blame it on rolling bad numbers).

Rules

Here we'll summarize the common rules, keep in mind there may be some variations, like extra rules on
competitive level and so on. The rules seem quite complex and arbitrary at first, but by playing you'll see
they're really pretty simple and sometimes quite intuitive (furthermore the game, at least on casual level,
mostly doesn't require such hard thinking as e.g. chess, so it even feels more relaxed, you can focus on the
rules well).

There are two players, black and white, each moving circular stone discs, or just stones of his color, here
we'll use {# for black stones and (0 for white ones. There are two six sided dice in the game. The board
has 24 places (vertical lines, traditionally drawn as long triangles) which stones can occupy. The following
shows the board, the initial setup of stones, the directions in which players move and their goals.

black's direction

|
| 1{#; ; ;00 ; |[(0; ; ; ;{# | white's goal
|| {# : (0 ¢ (0 or o o {# |
[{# . (0 | (O . .
Voo|{# . | (0 . |
ot
| (O [{# |
~ (0 . o {E
[10 . {#F | {#F. .
| (0 = = {# |{# :: : ;(0]
| 10 ; 5 ;{#; |{#; ; ; ;(0 | black's goal
|

Backgammon LRS Wiki 67/895

The goal of each player is to get all his stones to his goal -- the goal is one place beyond the last place on
the board in the direction of his movement. Whoever does this the first wins.

The first six places on one's path are called the home board, the last six are called the outer board.

At start both players roll the dice (each one rolls one), whoever rolls the bigger number starts and has to use
(details below) the numbers that were just rolled for his first turn (if the numbers were the same, they roll
again). After the first player finishes his round, the other player rolls both dice, makes his turn, then the first
player does the same again and so on, the players just take turns in rolling dice and playing.

A turn is played by rolling the two dice, resulting in numbers X (one die) and Y (the other one). The player
then moves two stones (he can choose which), one by X places, the other by Y places. He can also move the
same stone, but the move still counts as moving twice, i.e. first moving the stone by X, then moving it again
by Y, or vice versa (this may be important in regards to rules explained later). If X and Y are the same, the
numbers are doubled, so the player gets 4 numbers to play: X, X, X, X -- for example rolling 2 and 2, the
player can move 4 stones, each by 2, or 1 stone by 8 (in separate steps) or 1 stone by 2 and other one by 6
and so on. Moves cannot be skipped by choice, the player has to move "as much as he can", i.e. if he can at
least partially use the numbers he rolled, he has to (also if there is a choice between higher and lower
number rolled, he has to use the higher number etc.).

Movement: players move their stones in opposite directions by the number of steps they roll, in a kind of
horseshoe shaped path (as shown above -- topologically the board is just a 1D line, it's just curved to nicely
fill the board) -- notice that on one end the stones jump from one side of the board to the other side. Stones
can walk over stones of same color and can even stay on the same place -- if more than one stones occupy
the same place, they are "stacked" and protected against being taken. A stone can move over enemy stones
(even if multiple stacked enemy stones), but can end on such place only if there is exactly one enemy stone,
in which case it is taken -- it is removed and placed in the middle of the board. Remember that a stone that is
moving by a sum of rolled numbers counts as several discrete moves, so if a stone is moving e.g. by 3 + 3
steps, it's not the same as moving by 6 because after the first 3 steps taken it mustn't land on stacked
enemy stones (but it can land on one enemy stone and take it).

A stone that's been taken (placed in the middle of the board) is seen as being one place before the player's
starting place (the opposite of one's goal), and can be returned to the game (appearing in the enemy home
board) -- in fact it HAS TO be returned to the game before any other move can be made by the player whose
stone it is, i.e. if a player has any stones out of the game because the opponent has taken them, he cannot
move any other stones until he returns all his stones back to the game.

Once the player has all his stones in the enemy home board, he can start bearing off, i.e. getting the stones
to the goal (i.e. before this his stones aren't allowed to reach the goal). The goal is seen as a place one after
the final board square in the direction of the player's movement -- if the stone gets to the goal, it is placed on
the board border. Here there are a bit more complex rules: normally a stone may reach the goal only if it
steps on it exactly, i.e. a stone on the very last place can only get to the goal by rolling 1, the stone before it
by rolling 2 etc. However the stone furthest away from the goal may also use a value higher than this, i.e. if
there is a stone 3 places before the goal AND it is the last one back, it may finish with 3, 4, 5 or 6. During
bearing off the player may also use the lower rolled value first, even if it wouldn't fully utilize the higher
value (exception to a rule mentioned above).

Details

Despite chance playing some role, skill is highly important and there exist strategies and tactics that
maximize once chance of winning -- for example a basic realization is that the different sums you may roll
don't have the same probabilities, e.g. 8 can be achieved by 2 + 60or2+2+ 2+ 2,but3onlyas2 + 1 --
one can account for this. The highest probability to take the enemy stone with one's own stone is when the
stones are 6 places apart. Taking enemy stone while having own stones stacked in all places in enemy home
board makes opponent unable to play (he is required to return the stone to play but there is no number that
can do it for him). There is also some opening theory.

The game is internationally governed by WBGF (World Backgammon Federation), similarly to how chess is
governed by FIDE.

Backgammon LRS Wiki 68/895

Who was the best player ever? There doesn't seem to be a clear consensus, but Masayuki Mochizuki
(Japan) seems to come up very often as an answer to the question, other names include Paul Magriel, Nack
Ballard etc.

Backgammon was the first board game in which the world champion at the time (Luigi Villa) was defeated by
computer -- this happened in 1979. This was perhaps thanks to the element of chance.

As for backgammon computer engines the best free as in freedom one seems to be GNU backgammon,
using neural networks, apparently beyond the strength of best human players. The Extreme Gammon engine
is probably a bit stronger (currently said to be the strongest) but it is proprietary and therefore unusable.

Some statistics about the game: there are 18528584051601162496 legal positions. Average branching
factor (considering all possible dice rolls) is very high, somewhere around 400, which is likely why space
search isn't as effective as in chess and why neural networks greatly prevail. Average number of moves in a
game seem to be slightly above 20.

TODO

backpropagation

Backpropagation
{ Dunno if this is completely correct, I'm learning this as I'm writing it. There may be errors. ~drummyfish }

Backpropagation, or backprop, is an algorithm, based on the chain rule of derivation, used in training neural
networks; it computes the partial derivative (or gradient) of the function of the network's error so that we can
perform a gradient descent, i.e. update the weights towards lowering the network's error. It computes the
analytical derivative (theoretically you could estimate a derivative numerically, but that's not so accurate
and can be too computationally expensive). Backpropagation is one of the most common methods for
training neural networks but it is NOT the only possible one -- there are many more such as evolutionary
programming. It is called backpropagation because it works backwards and propagates the error from the
output towards the input, due to how the chain rule works, and it's efficient by reusing already computed
values.

Details

Consider the following neural network:

w000 w100

\ 7/ \ / \
\/w010 \/wll0 _E
/\wb01 /\wl01l /

/ N\ / \ /

/ \ 7/ \ 7/

woll wlll
It has an input layer (neurons x0, x1), a hidden layer (neurons y0, y1) and an output layer (neurons z0, z1).
For simplicity there are no biases (biases can easily be added as input neurons that are always on). At the
end there is a total error E computed from the networks's output against the desired output (training data).

Let's say the total error is computed as the squared error: E = squared_error(z0) + squared_error(z1) = 1/2 *
(z0 - z0_desired)™~2 + 1/2 * (z1 - z1_desired) "™ 2.

We can see each non-input neuron as a function. E.g. the neuron z0 is a function z0(x) = z0(a(z0s(x))) where:

¢ z0s is the sum of inputs to the neuron, in this case z0s(x) = w100 * yO(x) + +110 * y1(x)
¢ 3 is the activation function, let's suppose the normally used logistic function a(x) = 1/(1 + e™x).

Backpropagation LRS Wiki 69/895

If you don't know what the fuck is going on see neural networks first.

What is our goal now? To find the partial derivative of the whole network's total error function (at the
current point defined by the weights), or in other words the gradient at the current point. l.e. from the point
of view of the total error (which is just a number output by this system), the network is a function of 8
variables (weights w000, w001, ...) and we want to find a derivative of this function in respect to each of
these variables (that's what a partial derivative is) at the current point (i.e. with current values of the
weights). This will, for each of these variables, tell us how much (at what rate and in which direction) the
total error changes if we change that variable by certain amount. Why do we need to know this? So that we
can do a gradient descent, i.e. this information is kind of a direction in which we want to move (change the
weights and biases) towards lowering the total error (making the network compute results which are closer
to the training data). So all in all the goal is to find derivatives (just numbers, slopes) with respect to w000,
w001, w010, ... w111.

Could we do this without backpropagation? Yes -- we can use numerical algorithms to estimate derivatives,
the simplest one would be to just try to change each weight, one by one, by some small number, let's say
dw, and see how much such change changes the output error. l.e. we would sample the error function in all
directions which could give us an idea of the slope in each direction. However this would be pretty slow, we
would have to reevaluate the whole neural network as many times as there are weights. Backpropagation
can do this much more efficiently.

Backpropagation is based on the chain rule, a rule of derivation that equates the derivative of a function
composition (functions inside other functions) to a product of derivatives. This is important because by
converting the derivatives to a product we will be able to reuse the individual factors and so compute very
efficiently and quickly.

Let's write derivative of f(x) with respect to x as D{f(x),x}. The chain rule says that:

D{f(9(x)),x} = D{f(g(x)).9(x)} * D{g(x),x}

Notice that this can be applied to any number of composed functions, the product chain just becomes longer.
Let's get to the computation. Backpropagation work by going "backwards" from the output towards the input.
So, let's start by computing the derivative against the weight w100. It will be a specific number; let's call it

'w100. Derivative of a sum is equal to the sum of derivatives:

'w100 = D{E,w100} = D{squared error(z0),w100} + D{squared _error(z0),w100} =
D{squared error(z0),w100} + 0

(The second part of this sum became 0 because with respect to w100 it is a constant.)
Now we can continue and utilize the chain rule:

'w100 = D{E,w100} = D{squared error(z0),w100} = D{squared_error(z0(a(z0s))),w100} =
D(squared _error(z0),z0) * D{a(z0s),z0s} * d{z0s,w100}

We'll now skip the intermediate steps, they should be easy if you can do derivatives. The final results is:
'w100 = (z0 _desired - z0) * (z0s * (1 - z0s)) * y0

Now we have computed the derivative against w100. In the same way can compute 'w101, 'wl10 and
'wlll (weights leading to the output layer).

Now let's compute the derivative in respect to w000, i.e. the number 'w000. We will proceed similarly but the
computation will be different because the weight w000 affects both output neurons ('z0' and 'z1'). Again,
we'll use the chain rule.

w000 = D{E,w000} = D(E,y0) * D{a(y0s),y0s} * D{y0Os,w000}

D(E,y0) = D{squared _error(z0),y0} + D{squared error(z1),y0}

Backpropagation LRS Wiki 70/895

Let's compute the first part of the sum:

D{squared _error(z0),y0} = D{squared error(z0),z0s} * D{squared_error(z0s),y0}

D{squared error(z0),z0s} = D{squared_error(z0),z0} * D{a(z0s)),z0s}

Note that this last equation uses already computed values which we can reuse. Finally:

D{squared error(z0s),y0} = D{squared _error(wl100 * yO + w110 * y1),y0} = w100

And we get:

D{squared error(z0),y0} = D{squared _error(z0),z0} * D{a(z0s)),z0s} * w100

And so on until we get all the derivatives.

Once we have them, we multiply them all by some value (learning rate, a distance by which we move in
the computed direction) and subtract them from the current weights by which we perform the gradient
descent and lower the total error.

Note that here we've only used one training sample, i.e. the error E was computed from the network against

a single desired output. If more example are used in a single update step, they are usually somehow
averaged.

bazaar

Bazaar (The Cathedral And The Bazaar)

The Cathedral and the Bazaar (shortened to catb) is a very famous software engineering paper from 1997 by
Eric S. Raymond (ESR, a famous oldschool hacker writer) which analyzes the development method of Linux,
at the time a new way of mass developing FOSS software by many volunteers over the Internet with
relatively little central planning -- this method is called the Bazaar (the word used for marketplace in middle
east) and is contrasted with so called Cathedral method, i.e. the traditional, highly centralized development
of software (not necessarily of proprietary software). This essay was later being expanded, updated and
made into a whole book -- the short version of it can be read on ESR's website. It played a role in
corporations adopting "open source" (Netscape, i.e. Firefox, was "open sourced" basically because of this
essay).

Watch out: Raymond used to be an oldschool hacker who however, like many others, later turned to the evil
side once he smelled money and fame; he basically became hardcore capitalist, promoting open $ource, free
markets and even doing business himself. It can very well be seen in the essay -- it's not about
programming, it is about software engineering, i.e. managing and manipulating masses of people to work
like machines who will be continuously producing lines of code. It focused on things such as "productivity"
and basically how to develop bloat in fastest way and for least cost. It takes things such as update culture,
rapid development, gigantic software projects and existence of software companies for granted. Therefore
The Cathedral and the Bazaar is of no use to |less retarded software but it may be good to read for the big
picture view.

{ The online version is not very long, the writing style is good and there are nice, catchy observations about
software development, however it's still quite shitty, towards the end | was falling asleep, only the capitalist
trigger words kept me awake eventually. But there are some nice things, like "plan to throw one away", i.e.
when you want to write something, you'll probably have to write it once badly, by which you really
understand the issue, then you throw it away and implement it again, this time well. ~drummyfish }

Here is a small summary: ESR used to believe software beyond some complexity threshold (e.g. operating
system kernel or a big text editor) has to be developed mainly by a small team that closely communicates,
carefully fixes bugs that users report and releases stable versions once in relatively long time -- yes, even if
the software is FOSS and development is transparent. This is called the Cathedral method as the
development is similar to the careful, highly centrally planned building of a cathedral -- one example was e.g.

Bazaar (The Cathedral And The Bazaar) LRS Wiki 71/895

gcc (and any proprietary software, as they basically have no other option). However after seeing Linux (a
very complex project) being developed by great many people in a very decentralized manner, with the
central coordinator doing relatively little work, and having very short release cycles (even of buggy, unstable
versions), he concluded it can work differently -- he called this the Bazaar method, i.e. one that looks a bit
chaotic at first, but which statistically still converges to establishing good design in the end. He says the
biggest invention of Linus Torvalds isn't Linux but its development model. He examines how and why it works
because he sees it as the superior method, and he also tests the method on his own project (fetchmail) with
which he immediately sees a great success. He notes several things, e.g. the following. Users being at the
same time programmers (codevelopers) and vice versa is key because firstly programmers really care about
what they write (because they use it) and secondly we get nice bug reports (in programmer terms). "Given
enough eyeballs, all bugs are shallow" (Linus's law) says that with many users/programmers basically all
bugs get spotted and fixed quickly, which is helped by the rapid release cycles -- if someone fixes it quickly,
others see it's fixed and stop working on their more complicated fixes. This kind of parallelizes debugging
(and also other things such as design change exploration). Quick releases reward contributors, they see their
fixes immediately, contributors get motivated ("Treat your testers as your most valuable resource and they
will respond by becoming your most valuable resource."), even the "work no one wants to do" gets done.
Bazaar project needs several things. Firstly good Internet (that's why Linux coincided with cheap access to
Internet). Secondly it can't be started from scratch, someone has to make some basic project basically alone,
and it should be some truly honest project (not something that just aims for profit), usually starting with a
programmer "scratching his gwn itch" -- it's enough to make a project that shows promise so that people
start jumping in. The "leader" doesn't have to be genius but he has to be able to recognize good design
choices of contributors and he must be "good with people". Then he goes on to compare it to free market
and other crap, he basically concludes managers are useless and they just pretend to be useful :D

bbs

BBS

{ 1 am too young to remember this shit so I'm just writing what I've read on the web. ~drummyfish }

Bulletin board system (BBS) is, or rather used to be, a kind of server that hosts a community of users who
connect to it via terminal, who exchange messages, files, play games and otherwise interact -- BBSes were
mainly popular before the invention of web, i.e. from about 1978 to mid 1990s, however some still exist
today. BBSes are powered by special BBS software and the people who run them are called sysops.

Back then people connected to BBSes via dial-up modems and connecting was much more complicated than
connecting to a server today: you had to literally dial the number of the BBS and you could only connect if
the BBS had a free line (for zoomers: mobile phones were hardly a thing, every home had a land-line, a
physical wire for phone). Early BBSes weren't normally connected through Internet but rather through
other networks like UUCP working through phone lines. |l.e. a BBS would have a certain number of modems
that defined how many people could connect at once. It was also expensive to make calls into other
countries so BBSes were more of a local thing, people would connect to their local BBSes. Furthermore these
things ran often on non-multitasking systems like DOS so allowing multiple users meant the need for having
multiple computers. The boomers who used BBSes talk about great adventure and a sense of intimacy,
connecting to a BBS meant the sysop would see you connecting, he might start chatting with you etc.
Nowadays the few existing BBSes use protocols such as telnet, nevertheless there are apparently about 20
known dial-up ones in north America. Some BBSes evolved into more modern communities based e.g. on
public access Unix systems -- for example SDF.

A BBS was usually focused on a certain topic such as technology, fantasy roleplay, dating, warez etc., they
would typically greet the users with a custom themed ANSI art welcome page upon login -- it was pretty cool.
BBSes were used to share plain text files of all sorts, be it shareware versions of games, anarchist writings,
computer manuals, poetry or recipes. It really was a HUGE thing, you can dig up a lot of fun and obscure
material by searching for BBS stuff -- http://textfiles.com is one place that gathers tons and tons of plain text
files that were shared on these networks; searching and downloading files was just one favorite activity and
obsession of BSS users (there is a very funny text "confession" of a chronic BBS downloader called
dljunkie.txt, look that up, it's funny as hell).

BBS LRS Wiki 72/895

{ There's some documentary on BBS that's upposed to give you an insight into this shit, called literally BBS:
The documentary. It's about 5 hours long tho. ~drummyfish }

Considerable part of BBS community frowned upon anonymity (see e.g.
http://textfiles.com/law/ethics.txt), a rule of some BBSes was that you had to use your real life info like name
and address to communicate with others, some even advised against using handles. You met real, non-hiding
humans back then, not some anonymous furry they/thems faggot who is scared to even tell you what
continent he lives on. Of course, no one probably even considered any encrypted connection back then. This
show that today's privacy hysteria is a bullshit, it's sad that today you'll see the exact opposite -- sites that
PROHIBIT use of real life credentials. The world is fucked up now.

The first BBS was CBBS (computerized bulletin board system) created by Ward Christensen and Randy Suess
in 1978 during a blizzard storm -- it was pretty primitive, e.g. it only allowed one user to be connected at the
time. The ideas evolved from those of time sharing computers such as those running Unix, BBS just tried to
make them more "user friendly" and so bring in more public to where there were mostly just professionals
before, kind of an ancient Facebook-like mini revolution. After publication of their invention, BBSes became
quite popular and the number of them grew to many thousands -- later there was even a magazine solely
focused on BBSes (BBS Magazine). BBSes would later group into larger networks that allowed e.g.
interchange of mail. The biggest such network was EidoNet which at its peak hosted about 35000 nodes.

{ Found some list of BBSes at http://www.synchro.net/sbbslist.html. ~drummyfish }

See Also

¢ public access Unix
e Usenet

e modem world
o tildeverse
e multi user dungeon

e imageboard
e textboard

e SDF
e FidoNet

beauty

Beauty

Beauty is the quality of being extremely appealing and pleasing. Though the word will likely invoke
association with traditional art, in technology, engineering, mathematics and other science beauty is, despite
it's relative vagueness and subjectivity, an important aspect of design, and in fact this "mathematical
beauty" has lots of times some clearly defined shapes -- for example simplicity is mostly considered
beautiful. Beauty is similar to and many times synonymous with elegance.

Beauty can perhaps be seen as a heuristic, a touch of intuition that guides the expert in exploration of
previously unknown fields, as we have come to learn that the greatest discoveries tend to be very beautiful
(however there is also an opposite side: some people, such as Sabine Hossenfelder, criticize e.g. the pursuit
of beautiful theories in modern physics as this approach seems to be have led to stagnation). Indeed,
beginners and noobs are mostly concerned with learning hard facts, learning standards and getting familiar
with already known ways of solving known problems, they often aren't able to recognize what's beautiful and
what's ugly. But as one gets more and more experienced and finds himself near the borders of current
knowledge, there is suddenly no guidance but intuition, beauty, to suggest ways forward, and here one starts
to get the feel for beauty. At this point the field, even if highly exact and rigorous, has become an art.

What is beautiful then? As stated, there is a lot of subjectivity, but generally the following attributes are
correlated with beauty:

e simplicity/minimalism, typically finding simplicity in complexity, e.g. a very short formula or
algorithm that describes an infinitely complex fractal shape, a simple but valuable equation in physics

Beauty LRS Wiki 73/895

(e = m* c”™2), ashort computer program that yields rich results (demoscene, code golfing, suckless,
minimal viable program, ...).

e deepness -- if something starting very simple, e.g. a single small equation, leads to consequences
that may be studied for millennia, for example prime numbers.

e generality, i.e. if a simple equation can describe many problems, not just a specific case.

¢ lack of exceptions, i.e. when our equation works without having to deal with special cases (in
programming represented by if-then branches).

e symmetry, i.e. when we can e.g. swap variables in the equation and get some kind of opposite
result.

e unification, i.e. if multiple nice things meet, for example the Euler's identity brings together into one
equation the most important numbers in mathematics: i, pi, 1 and 0.

¢ aesthetics, either of the equation itself or the generated thing (fractals, attractors, ...).

¢ TODO

Examples of beautiful things include:

¢ Euler's identity, an equation often cited as the most beautiful in mathematics: e~ {ipi} + 1 = 0*. It
is simple and contains many of the most important numbers: e, pi, i 1 and 0.

e minimalist software, Unix philosophy

o fractals TODO

* bytebeat

bilinear

Bilinear Interpolation

Bilinear interpolation (also bilinear filtering) is a simple way of creating a smooth transition (interpolation)
between discrete samples (values) in 2D, it is a generalization of linear interpolation to 2 dimensions. It is
used in many places, popularly e.g. in 3D computer graphics for texture filtering; bilinear interpolation
allows to upscale textures to higher resolutions (i.e. compute new pixels between existing pixels) while
keeping their look smooth and "non-blocky" (even though blurry). On the scale of quality vs simplicity it is
kind of a middle way between a simpler nearest neighbour interpolation (which creates the "blocky" look)
and more complex bicubic interpolation (which uses yet smoother curves but also requires more samples).
Bilinear interpolation can further be generalized to trilinear interpolation (in computer graphics trilinear
interpolation is used to also additionally interpolate between different levels of a texture's mipamap) and
perhaps even bilinear extrapolation. Many frameworks/libraries/engines have bilinear filtering built-in (e.g.
GL LINEAR in OpenGL). Of course this method may be used to smooth not just textures but anything, for
example terrain heightmaps or just any discrete mathematical function that we simply want to have defined
everywhere, it's not just graphics thing, but here we will focus on its application in graphics.

####0000VVVVaaaaxxxxsssstfffllllcccc//// VM s, 0,0 e ee -

0000VVVVVVVaaaaaaaaxxxxxxxsssssssffffffffll11111lcccccecc////////!
000VVVVVVVVaaaaaaaaxxxxxxxxssssssssffffffffl111111lccccccecc/////
00VVVVVVVVVaaaaaaaaaxxxxxxxxsssssssssTfffffffL1111111lccccccecc//
0VVVVVVVVVVaaaaaaaaaxxxxxxxxxssssssssssfffffffffl1111111lccccccc
VVVVVVVVVVaaaaaaaaaaaxxxxxxxxxxssssssssssfffffffffffL111111111cc
VVVVVVVVVVaaaaaaaaaaaxXXXXXXXxxxxsssssssssssffffffffffff11111111
VVVVVVVVVVaaaaaaaaaaaaxXXXXXXXXXXXXs5555ssssssssffffffffffffflll
VVVVVVVVVaaaaaaaaaaaaaaaxXXXXXXXXXXXXX55555555555ssssfffffffffff
VVVVVVVVaaaaaaaaaaaaaaaaax XXX XX XXXXXXXXXXXX5555555555555555sffff
VVVVVVVaaaaaaaaaaaaaaaaaaaaaxXXXXXXXXXXXXXXXXXXXSSSSSSSSSSSSSSSS
VVVVVVaaaaaaaaaaaaaaaaaaaaaaaaaxXXXXXXXXXXXXXXXXXXXXXXXXXSSSSSSS

Bilinear Interpolation LRS Wiki 74/895

VVVVaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaX XXX XXXXXXXXXXXXXXXXXXXXXXX
daaxXXXXXXXXXXXXXXX
aaaaaaaaaaaaaaaaaaadaaaaaaaaadaddaaaaaaaaaadaaaaaaaaaaaaaaaaaaaaaa
daaaaaaaaaaaaaaaaaaaaaaaadaaadaadaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaVVVVVVVVVVVVVVVVVVV
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
aaaaaaaaaaaaaaaaaaaaaaaaVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV000000
aaaaaaaaaaaaaaaaaaaaaVVVVVVVVVVVVVVVVVVVVVVVVVV00000000000000000
aaaaaaaaaaaaaaaaaaaaVVVVVVVVVVVVVVVVVVVV000000000000000000000###

The above image is constructed by applying bilinear interpolation to the four corner values.

The principle is simple: first linearly interpolate in one direction (e.g. horizontal), then in the other (vertical).
Mathematically the order in which we take the dimensions doesn't matter (but it may matter practically due
to rounding errors etc.).

Example: let's say we want to compute the value x between the four following given corner values:

1......5

83

Let's say we first interpolate horizontally: we'll compute one value, a, on the top (between 1 and 5) and one
value, b, at the bottom (between 8 and 3). When computing a we interpolate between 1 and 5 by the
horizontal position of x (4/7), sowegeta=1+4/7*(5-1) = 23/7. Similartly b =8 + 4/7 * (3-8) = 36/7.
Now we interpolate between a and b vertically (by the vertical position of x, 5/7) to get the final value x =
23/7 + 5/7 * (36/7 - 23/7) = 226/49 ~= 4.6. If we first interpolate vertically and then horizontally, we'd get
the same result (the value between 1 and 8 would be 6, the value between 5 and 3 would be 25/7 and the
final value 226/49 again).

Here is a C code to compute all the inbetween values in the above, using fixed point (no float):

#include <stdio.h>
#define GRID RESOLUTION 8

int interpolatelLinear(int a, int b, int t)
{

return a + (t * (b - a)) / (GRID RESOLUTION - 1);
}

int interpolateBilinear(int topLeft, int topRight, int bottomLeft, int bottomRight,
int x, int y)

#define FPP 16 // we'll use fixed point to prevent rounding errors

#if 1 // switch between the two versions, should give same results:
// horizontal first, then vertical
int a = interpolatelLinear(topLeft * FPP,topRight * FPP,x);
int b = interpolateLinear(bottomLeft * FPP,bottomRight * FPP,x);
return interpolatelLinear(a,b,y) / FPP;

#else
// vertical first, then horizontal
int a = interpolatelLinear(topLeft * FPP,bottomLeft * FPP,y);
int b = interpolatelLinear(topRight * FPP,bottomRight * FPP,y);
return interpolatelLinear(a,b,x) / FPP;

#endif

}

int main(void)

{
for (int y = 0; y < GRID RESOLUTION; ++y)
{

Bilinear Interpolation LRS Wiki 75/895

for (int x = 0; x < GRID RESOLUTION; ++x)
printf("%d ",interpolateBilinear(1,5,8,3,%x,y));

putchar('\n');
}

return 0;

}

The program outputs:

CONOUAWN -
CONOUTA WN -
NNOUDNWNN
cooOU A WWN
couUuUhAB~WW
S G, T, S, I N N N OY}
AUUUDNDADEDS
WhRBAPUUL LWLV

Cool hack to improve bilinear interpolation (from https://iquilezles.org/articles/texture): bilinear
interpolation doesn't looks as good as bicubic but bicubic is a lot more complex on hardware and bandwidth
as it requires fetching more texels -- there is one trick which shader programmers use to improve the look of
bilinear filtering while not requiring fetching more texels. They use the smoothstep function on the
interpolation parameter which eliminates instant "jumps" at edges between texels, it replaces straight lines
with a smoother curve and so makes the derivative of the result continuous -- basically it looks a lot better.
Still not as good as bicubic but close enough.

TODO: code for the above

billboard

Billboard

In 3D computer graphics billboard is a flat image placed in the scene that rotates so that it's always facing
the camera. Billboards used to be greatly utilized instead of actual 3D _models in old games thanks to being
faster to render (and possibly also easier to create than full 3D models), but we can still encounter them
even today and even outside retro games, e.g. particle systems are normally rendered with billboards (each
particle is one billboard). Billboards are also commonly called sprites, even though that's not exactly
accurate.

By axis of rotation there are two main types of billboards:

¢ Ones rotating only about vertical axis, i.e. billboards that change only their yaw, they only face
the camera in a top-down view of the scene. Such sprite may deform on the screen (when the camera
is at different height level) just like 3D models do and when viewed completely from above will
disappear completely. This may in some situations look better than other options (e.g. in games
enemies won't appear lying on their back when seen from above).

* Freely rotating ones, i.e. ones that change all three Euler angles so that they ALWAYS face the
camera from any possible angle.

Furthermore there is another subdivision into two main types by HOW the billboards rotate:

¢ Projection plane aligned: These billboards always align their orientation with the camera's
projection plane (they simply rotate themselves in the same way as the camera) which always end up
on the screen as an undeformed and unrotated image. This is simple to implement, we can simply blit
a 2D image on the rendered 3D view.

e Camera position facing: These billboards face themselves towards the camera's position and copy
the camera's roll.

Though the two types above may seem like two same things at first glance, they are in fact not, for the latter
we need to know the camera and billboard's positions, for the former we only need the camera's rotation. For

Billboard LRS Wiki 76/895

simplicity we usually choose to implement the former (projection plane aligned), though the latter may result
in look closer to that which would be produced by an actual 3D model of the object.

projection plane aligned position facing

| \
| |
| \

| | _ 7
I
|

Projection plane aligned vs position facing billboards.

Some billboards also choose their image based on from what angle they're viewed (e.g. an enemy in a game
viewed from the front will use a different image than when viewed from the side, as seen e.g. in Doom). Also
some billboards intentionally don't scale and keep the same size on the screen, for example health bars in
some games.

In older software billboards were implemented simply as image blitting, i.e. the billboard's scaled image
would literally be copied to the screen at the appropriate position (this would implement the freely rotating
billboard). Nowadays when rendering 3D models is no longer really considered harmful to performance and
drawing pixels directly is less convenient, billboards are more and more implemented as so called textured
quads, i.e. they are really a flat square 3D model that may pass the same pipeline as other 3D models (even
though in some frameworks they may actually have different vertex shaders etc.) and that's simply rotated
to face the camera in each frame (in modern frameworks there are specific functions for this).

Fun fact: in the old games such as Doom the billboard images were made from photographs of actual
physical models from clay. It was easier and better looking than using the primitive 3D software that existed
back then.

Implementation Details
The following are some possibly useful things for implementing billboards.

The billboard's position on the screen can be computed by projecting its center point in world coordinates
with modelview and projection matrices, just as we project vertices of 3D models.

The billboard's size on the screen shall due to perspective be multiplied by 1 / (tan(FOV /2) * z) where FOV is
the camera’s field of view and z is the billboard's distance from camera's projection plane (which is NOT
equal to the mere distance from the camera's position, that would create a fisheye lens effect -- the distance
from the projection plane can be obtained from the above mentioned projection matrix). (If the camera's FOV
is different in horizontal and vertical directions, then also the billboard's size will change differently in these
directions.)

For billboards whose images depends on viewing angle we naturally need to compute the angle. We may do
this either in 2D or 3D -- most games resort to the simpler 2D case (only considering viewing angle in a
single plane parallel to the floor), in which case we may simply use the combination of dot product and cross
product between the normalized billboard's direction vector and a normalized vector pointing from the
billboard's position towards the camera's position (dot product gives the cosine of the angle, the sign of cross
product's vertical component will give the rest of the information needed for determining the exact angle).
Once we have the angle, we quantize (divide) it, i.e. drop its precision depending on how many directional
images we have, and then e.g. with a switch statement pick the correct image to display. For the 3D case
(possible different images from different 3D positions) we may first transform the sprite's 3D facing vector to
camera space with appropriate matrix, just like we transform 3D models, then this transformed vector will

Billboard LRS Wiki 77/895

(again after quantization) directly determine the image we should use.

When implementing the free rotating billboard as a 3D quad that's aligning with the camera projection plane,
we canh construct the model matrix for the rotation from the camera's normalized directional vectors: R is
camera's right vector, U is its up vector and F is its forward vector. The matrix simply transforms the quad's
vertices to the coordinate system with bases R, U and F, i.e. rotates the quad in the same way as the
camera. When using row vectors, the matrix is following:

R.x R.y R.z 0

U.x U.y U.z 0

F.x F.y F.z 0

6 0 0 1
bill_gates

Bill Gate$

"Some people are so poor that all they've got is money."

William "Bill" Gaytes (28.10.1955 -- TODO) is a mass murderer and rapist (i.e. capitalist) who established and
led the terrorist organization Micro$oft. He is one of the most rich and evil individuals in history who took
over the world by force establishing the malware "operating system" Window$ as the common operating
system, nowadays being dangerous especially by hiding behind his "charity organization" (see
charitywashing) which has been widely criticized (see e.q.
http://techrights.org/wiki/Gates_Foundation_Critique, even such mainstream media as Wikipedia present the
criticism) but which nevertheless makes him look as someone doing "public good" in the eyes of the naive
brainless NPC masses. The Church of Emacs call Gates the devil (https://www.gnu.org/fun/jokes/gospel.html).

NI
_.ll II./
VAVEETLEL
(=[0 1"[0]=)
NIRRTV,
[
NN

dead or alive
ASCII portrait of Bill Gaytes

He is really dumb, only speaks one language and didn't even finish university. He also has no moral values,
but that goes without saying for any rich businessman. He was owned pretty hard in chess by Magnus
Carlsen on some shitty TV show.

When Bill was born, his father was just busy counting dollar bills, so he named him Bill. Bill was mentally
retarded as a child and as such had to attend a private school. He never really understood programming but
with a below average intelligence he had a good shot at succeeding in business. Thanks to his family
connections he got to Harvard where he met Steve Ballmer. Later he dropped out of the school due to his low
intelligence.

In 1975 he founded Micro$oft, a malware company named after his dick. By a sequence of extremely lucky
events combined with a few dick moves by Bill the company then became successful: when around the year
1980 IBM was creating the |IBM PC, they came to Bill because they needed an operating system. He lied to
them that he had one and sold them a license even though at the time he didn't have any OS (lol). After that
he went to a programmer named Tim Paterson and basically stole (bought for some penny) his OS named
QDOS and gave it to IBM, while still keeping ownership of the OS (he only sold IBM a license to use it, not
exclusive rights for it). He basically fucked everyone for money and got away with it, the American way. For
this he is admired by Americans.

When Bill Gates and Steve Jobs saw how enormously rich they got by abusing the whole world, they got

Bill Gate$ LRS Wiki 78/895

horny and had gay sex together, after which Bill legally changed his hame to Bill Gaytes. This however gave
Jobs ass cancer and he died.

binary

Binary

The word binary in general refers to having two choices or "two of a thing"; in computer science binary refers
to the base 2 numeral system, i.e. a system of writing numbers with only two symbols, usually 1s and Qs,
which are commonly interpreted true vs false. We can write any number in binary just as we can with our
everyday decimal system (which uses ten digits, as opposed to two), but binary is more convenient for
computers because this system is easy to implement in electronics (a switch can be on or off, i.e. 1 or 0;
systems with more digits were tried but unsuccessful, they failed miserably in reliability -- see e.qg. ternary
computers). The word binary is also by extension used for non-textual computer files such as native
executable programs or asset files for games.

One binary digit (a "place" for binary value in computer memory) can be used to store exactly 1 bit of
information. We mostly use binary digits in two ways:

1. With single bits we represent basic logic values, i.e. true and false, and perform logic operations (e.qg.
AND, OR etc.) with so called Boolean algebra.

2. By grouping multiple bits together we create a base-2 numeral system that behaves in the same
way as our decimal system and can be used to record numbers. We can build this numeral system
with the above mentioned Boolean algebra, i.e. we extend our simple one bit system to multi bit
system allowing to work not just with two values (true and false) but with many distinct values (whole
numbers, from which we may later construct fractions etc.). Thanks to this we can implement
algebraic operations such as addition, multiplication, square roots etc.

Of course the binary system didn't appear from nowhere, people in ancient times used similar systems, e.g.
the poet Pingala (200 BC) created a system that used two syllables for counting, old Egyptians used so called
Eye of Horus, a unit based on power of two fractions etc. Thomas Harriot used something very similar to
today's binary in 1600s. It's just that until computers appeared there wasn't much practical use for it, so no
one cared.

{ There is one classic but overplayed joke that became extremely cringe exactly by being too overplayed by
wannabe haxors who think learning binary makes you Einstein, however since many noobs will likely be
reading this and it helps understand the subject, it may be good to tell it anyway. It goes like this: There are
10 types of people -- those who understand binary and those who don't. Sometimes this is extended with:
and those who don't know this joke is in base 3. You can also give people the finger by sending them "binary
four". ~drummyfish }

Boolean Algebra ("True/False Logic")

In binary we start by working with single bits -- each bit can hold two values, 1 and 0. We may see bits now
like "simple numbers", we'll want to do operations with them, but they can only ever be one of the two
values. Though we can interpret these values in any way -- e.g. in electronics we see them as high vs low
voltage -- in mathematics we traditionally turn to using logic and interpret them as meaning true (1) and
false (0). This will further allow us to apply all the knowledge and theory we have gathered about logic, such
as formulas that allow us to simplify binary expressions etc.

Next we want to define "operations" we can perform on single bits -- for this we use so called Boolean
algebra, which is originally a type of abstract algebra that works with sets and their operations such as
conjunction, disjunction etc. Boolean algebra can be seen as a sort of simplified version of what we do in
"normal" elementary school algebra -- just as we can add or multiply numbers, we can do similar things with
individual bits, we just have a bit different operations such as logic AND, logic OR and so on. Generally
Boolean algebra can operate with more than just two values, however that's more interesting to
mathematicians; for us all we need now is a binary Boolean algebra -- that's what programmers have
adopted for their field. It is the case that in context of computers and programming we implicitly understand
Boolean algebra to be the one working with 1s and Os, i.e. the binary version, so the word "boolean" is

Binary LRS Wiki 79/895

essentially used synonymously with "binary" around computers. Many programming languages have a data
type called boolean or bool that allows represents just two values (true and false).

The very basic operations, or logic functions, of Boolean algebra are:

¢ NOT (negation, !): Done with single bit, turns 1 into 0 and vice versa.

¢ AND (conjunction, /\): Done with two bits, yields 1 only if both input bits are 1, otherwise yields 0.
This is similar to multiplication (1*1=1,1*0=0,0*1=0,0*0=0).

¢ OR (disjunction, \/): Done with two bits, yields 1 if at least one of the input bits is 1, otherwise yields
0. This is similar to addition (1 +1=1,1+0=1,0+1=1,0+ 0 =0).

There are also other function such as XOR (exclusive OR, is 1 exactly when the inputs differ) and negated

versions of AND and OR (NAND and NOR, give opposite outputs of the respective non-negated function). The
functions are summed up in the following table (we all these kinds of tables truth tables):

XY NOT X XANDY XxXORy X XORYy XxNAND Yy X NOR Yy X NXORy

001 0 0 0 1 1 1
011 0 1 1 1 0 0
100 0 1 1 1 0 0
110 1 1 0 0 0 1

In fact there exists more functions with two inputs and one output (16 in total, computing this is left as
exercise :]). However not all are named -- we only use special names for the commonly used ones, mostly
the ones in the table above.

An interesting thing is that we may only need one or two of these functions to be able to create all other
function (this is called functional completeness); for example it is enough to only have AND and NOT
functions together to be able to construct all other functions. Functions NAND and NOR are each enough by
themselves to make all the other functions! For example NOT x = x NAND x, x AND y = NOT (x NAND y) = (x
NAND y) NAND (x NAND y), x OR y = (x NAND x) NAND (y NAND y) etc.

Boolean algebra further tells us some basic laws we can use to simplify our expressions with these functions,
for example:

e trivial laws:
¢+ XAND 0 =0
¢xOR1=1
¢ XAND 1 = x
¢+ xXxORO0 =x
¢ X AND x = x
¢ XxOR Xx=x
¢ commutativity of OR: x OR y = y OR x
¢+ commutativity of OR: x AND y = y AND x
¢ associativity of AND: x OR (x OR x) = (x OR x) OR x
¢ associativity of AND: x AND (x AND x) = (x AND x) AND x
* ...
e distributive laws:
¢ X AND (y OR z) = (x AND y) OR (x AND z)
¢ XOR (y AND z) = (x OR y) AND (x OR 2)
¢ De Morgan's laws:
¢ NOT (x AND y) = NOT(x) OR NOT(y)
¢ NOT (x OR y) = NOT(x) AND NOT(y)

o aea
By combining all of these simple functions it is possible to construct not only operations with whole numbers

and traditional algebra, but also a whole computer that renders 3D graphics and sends multimedia over the
Internet. For more details see logic circuits.

Binary LRS Wiki 80/895

Base-2 Numeral System

While we may use a single bit to represent two values, we can group more bits together and become able to
represent more values; the more bits we group together, the more values we'll be able to represent as
possible combinations of the values of individual bits. The number of bits, or "places" we have for writing a
binary number is called a number of bits or bit width. A bit width N allows for storing 27N values -- e.g. with
2 bits we can store 272 = 4 values: 0, 1, 2 and 3, in binary 00, 01, 10 and 11. With 3 bits we can store 23
= 8 values: 0 to 7, in binary 000, 001, 010, 011, 100, 101, 110, 111. And so on.

At the basic level binary works just like the decimal (base 10) system we're used to. While the decimal
system uses powers of 10, binary uses powers of 2. Here is a table showing a few numbers in decimal and
binary:

decimal binary
0

1

10

11

100
101
110
111
1000

00O NO UL~ WNBHFH O

Conversion to decimal: let's see an example that utilizes the facts mentioned above. Let's have a number
that's written as 10135 in decimal. The first digit from the right (5) says the number of 107 (0)s (1s) in the
number, the second digit (3) says the number of 107 (1)s (10s), the third digit (1) says the number of
107(2)s (100s) etc. Similarly if we now have a number 100101 in binary, the first digit from the right (1)
says the number of 27(0)s (1s), the second digit (0) says the number of 2°(1)s (2s), the third digit (1) says
the number of 27(2)s (4s) etc. Therefore this binary number can be converted to decimal by simply
computing1*270+0*27"1 +1*272+0*2"3+0*2"4 +1*2"5=1+4+ 32 =37.

100101 = 1 + 4 + 32 = 37
[ITTT]
__ number of 270s (= 1s)
__number of 271s (= 2s)
__number of 272s (= 4s)
__number of 273s (= 8s)
__number of 274s (= 16s)
__number of 275s (= 32s)

To convert from decimal to binary we can use a simple algorithm that's again derived from the above.
Let's say we have a number X we want to write in binary. We will write digits from right to left. The first
(rightmost) digit is the remainder after integer division of X by 2. Then we divide the number by 2. The
second digit is again the remainder after division by 2. Then we divide the number by 2 again. This continues
until the number is 0. For example let's convert the number 22 to binary: first digit =22 % 2 =0;22/2 =
11, second digit=11%2=1;11/2 =5;thirddigit=5%2=1;5/2=2,2%2=0;2/2=1,1%2 =1,
1/2 =0.Theresultis 10110.

NOTE: once we start grouping bits to create numbers, we typically still also keep the possibility to apply the
basic Boolean operations to these bits. You will sometimes encounter the term bitwise operation which
signifies an operation that works on the level of single bits by applying given function to bits that correspond
by their position; for example a bitwise AND of values 1010 and 1100 will give 1000.

Operations with binary numbers: again, just as we can do arithmetic with decimal numbers, we can do
the same with binary numbers, even the algorithms we use to perform these operations with pen and paper
work basically the same. For example the following shows multiplication of 110 (6) by 11 (3) to get 10010
(18):

Binary LRS Wiki 81/895

110 *
11

110
110

10010

All of these operations can be implemented just using the basic boolean functions -- see |logic circuits and
CPUs.

In binary it is very simple and fast to divide and multiply by powers of 2 (1, 2, 4, 8, 16, ...), just as it is simply
to divide and multiple by powers of 10 (1, 10, 100, 1000, ...) in decimal (we just shift the radix point, e.g. the
binary number 1011 multiplied by 4 is 101100, we just added two zeros at the end). This is why as a
programmer you should prefer working with powers of two (your programs can be faster if the
computer can perform basic operations faster).

Binary can be very easily converted to and from hexadecimal and octal because 1 hexadecimal
(octal) digit always maps to exactly 4 (3) binary digits. E.g. the hexadeciaml number FO is 11110000 in
binary (1111 is always equaivalent to F, 0000 is always equivalent to 0). This doesn't hold for the decimal
base, hence programmers often tend to avoid base 10.

We can work with the binary representation the same way as with decimal, i.e. we can e.g. write negative
numbers such as -110101 or rational numbers (or even real numbers) such as 1011.001101. However in a
computer memory there are no other symbols than 1 and 0, so we can't use extra symbols such as - or. to
represent such values. So if we want to represent more numbers than non-negative integers, we literally
have to only use 1s and 0s and choose a specific representation/format/encoding of numbers -- there are
several formats for representing e.g. signed (potentially negative) or rational (fractional) numbers, each with
pros and cons. The following are the most common number representations:

¢ two's complement: Allows storing integers, both positive, negative and zero. It is probably the
most common representation of integers because of its great advantages: basic operations (+, -,
*) are performed exactly the same as with "normal" binary numbers, and there is no negative zero
(which would be an inconvenience and waste of memory). Inverting a number (from negative to
positive and vice versa) is done simply by inverting all the bits and adding 1. The leftmost bit signifies
the number's sign (0 = +, 1 = -).

e sign-magnitude: Allows storing integers, both positive, negative and zero. It's pretty
straightforward: the leftmost bit in a number serves as a sign (0 means +, 1 means -) and the rest of
the number is the distance from zero in "normal" representation. So e.g. a 4 bit number 0011 is 3
while 1011 is -3 (note that we have to know the bit width of the number here, e.g. on 8 bits -3 would
be 10000011). The disadvantage is there are two values for zero (positive, 0000 and negative, 1000)
which wastes a value and presents a computational inconvenience, and operations with these
numbers are more complicated and slower (checking the sign requires extra code).

e one's complement: Allows storing integers, both positive, negative and zero. The leftmost bit
signifies a sign, in the same way as with sign-magnitude, but numbers are inverted differently: a
positive number is turned into negative (and vice versa) by inverting all bits. So e.g. 0011 is 3 while
1100 is -3 (again, bit width matters). The disadvantage is there are two values for zero (positive, 0000
and negative, 1111) which wastes a value and presents a computational inconvenience, and some
operations with these numbers may be more complex.

o fixed point: Allows storing rational numbers (fractions), i.e. numbers with a radix point (such as
1101.011), which can also be positive, negative or zero. It works by imagining a radix point at some
fixed position in the binary representation, e.g. if we have an 8 bit number, we may consider 5
leftmost bits to represent the whole part and 3 rightmost bits to be the fractional part (so e.g the
number 11010110 represents 11010.110). The advantage here is extreme simplicity (we can use
normal integer numbers as fixed point simply by imagining a radix point). The disadvantage may be
low precision and small range of representable values.

¢ floating point: Allows storing rational numbers in great ranges, both positive, negative and zero,
plus some additional values such as infinity and not a number. It allows the radix point to be shifted
which gives a potential for storing extremely big and extremely small numbers at the same time. The
disadvantage is that float is extremely complex, bloated, wastes some values and for fast execution
requires a special hardware unit (which most "normal" computers nowadays have, but are missing

Binary LRS Wiki 82/895

e.g. in some embedded systems).

As anything can be represented with numbers, binary can be used to store any kind of information such as
text, images, sounds and videos. See data structures and file formats.

Binary numbers can nicely encode sets: one binary number can be seen as representing a set, with each
bit saying whether an object is or is not present. For example an 8 bit number can represent a set of whole
numbers 0 to 7. Consider e.g. a value S1 = 10000101 and S2 = 01001110; S1 representsaset {0,2,7 },52
represents a set { 1, 2, 3, 6 }. This is natural and convenient, no bits are wasted on encoding order of
numbers, only their presence or absence is encoded, and many set operations are trivial and very fast. For
example the basic operations on sets, i.e. union, intersection, complement are simply performed with
boolean operators OR, AND and NOT. Also checking membership, adding or removing numbers to the set etc.
are very simple (left as an exercise for the reader lol; also another exercise -- in a similar fashion, how would
you encode a multiset?). This is actually very useful and commonly used, for example chess engines often
use 64 bit numbers to represent sets of squares on a chessboard.

See Also

eunary
e ternary

e logic circuit

* bit

e hexadecimal

¢ De Morgan's laws
e data structure

e data type

bit_hack

Bit Hack

Bit hacks (also bit tricks, bit magic, bit twiddling etc.) are simple clever formulas for performing useful
operations with binary humbers. Some operations, such as checking if a number is power of two or reversing
bits in a number, can be done very efficiently with these hacks, without using loops, branching and other
undesirably slow operations, potentially increasing speed and/or decreasing size and/or memory usage of
code -- this can help us gptimize. Many of these can be found on the web and there are also books such as
Hacker's Delight which document such hacks.

Basics

Basic bit manipulation techniques are common and part of general knowledge so they won't be listed under
hacks, but for sake of completeness and beginners reading this we should mention them here. Let's see the
basic bit manipulation operators in C:

¢ | (bitwise OR): Performs the logical OR on all corresponding bits of two operands, e.g. 0b0110 |
0b1100 gives 0b1110 (14 in decimal). This is used to set bits and combine flags (options) into a single
numeric value that can easily be passed to function etc. For example to set the lowest bit of a number
to 1 just do myNumber | 1. Now consider e.g. #define OPTION A 0b0001, #define OPTION B 0b0010
and #define OPTION C 0b0100, now we can make a single number that represents a set of selected
options e.g. as OPTION _C | OPTION_B (the value will be 0101 and says that options B and C have
been selected).

¢ & (bitwise AND): Performs the logical AND on all corresponding bits of two operands, e.g. 0b0110 &
0b1100 gives 0b0100 (4 in decimal). This may be used to mask out specific bits, to check if specific
bits are set (useful to check the set flags as mentioned above) or to clear (set to zero) specific bits.
Consider the flag example from above, if we want to check if value x has e.g. the option B set, we
simply do x & OPTION B which results in non-zero value if the option is set. Another example may be
myNumber & 0b00001111 (in practice you'll see hexadecimal values, i.e. myNumber & OxOF) which

Bit Hack LRS Wiki 83/895

masks out the lowest 4 bits of myNumber (which is equivalent to the operation modulo 16).

¢ ~ (bitwise NOT): Flips every bit of the number -- pretty straightforward. This is used e.g. for clearing
bitsas x & ~(1 << 3) (clear 4th bit of x).

¢~ (bitwise XOR): Performs the logical XOR on all corresponding bits of two operands, e.g. 0b0110 ~
0b1100 gives Ob1010 (10 in decimal). This is used to e.qg. flip specific bits.

e << and >> (binary shift left/right): Performs bitwise shift left or right (WATCH OUT: shifting by data
type width or more is undefined behavior in C). This is typically used to perform fast multiplication
(left) and division (right) by powers of two (2, 4, 8, 16, ...), just as we can quickly multiply/divide by 10
in decimal by shifting the decimal point. E.g. 5 << 3 isthesameas5* 273 =5 *8 = 40.

e We also sometimes use the logical (i.e. NOT bitwise) operators && (AND), | | (OR) and ! (NOT); the
difference against bitwise operators is that firstly they work with the whole value (i.e. not individual
bits), considering 0 to be false and anything else to be true, and secondly they may employ a bit more
complexity, e.qg. short circuit evaluation.

Specific Bit Hacks

{ Work in progress. I'm taking these from various sources such as the Hacker's Delight book or web and
rewriting them a bit, always testing. Some of these are my own. ~drummyfish }

TODO: stuff from this gophersite: gopher://bitreich.org/0/thaumaturgy/bithacks

Unless noted otherwise we suppose C syntax and semantics and integer data types, but of course we mainly
want to express formulas and patterns you can use anywhere, not just in C. Keep in mind all potential
dangers, for example it may sometimes be better to write an idiomatic code and let compiler do the
optimization that's best for given platform, also of course readability will worsen etc. Nevertheless as a
hacker you should know about these tricks, it's useful for low level code etc.

2”™"N: 1 << N
absolute value of x (two's complement):

int t = x >> (sizeof(x) * 8 - 1);
Xx=(x+t) ~t;

average x and y without overflow: (x & y) + ((x ~ y) >> 1) { TODO: works with unsigned, not sure
about signed. ~drummyfish }

clear (to 0) Nth bitof x: x & ~(1 << N)
clear (to 0) rightmost 1 bitof x: x & (x - 1)

conditionally add (subtract etc.) x and y based on conditionc (cisOor 1): x + ((0 - ¢c) & y), this
avoids branches AND ALSO multiplication by ¢, of course you may replace + by another operators.

count O bits of x: Count 1 bits and subtract from data type width.

count 1 bits of x (8 bit): We add neighboring bits in parallel, then neighboring groups of 2 bits, then
neighboring groups of 4 bits.

(x & 0x55) + ((x >> 1) & 0x55);
(x & 0x33) + ((x >> 2) & 0x33);
(x & 0x0f) + (x >> 4);

X
X
X

count 1 bits of x (32 bit): Analogous to 8 bit version.

X = (x & 0x55555555) + ((x >> 1) & 0Ox55555555);
X = (x & 0x33333333) + ((x >> 2) & 0x33333333);
X = (x & OxOFfOFfOFOF) + ((x >> 4) & OxOfOfOfOf);
X = (x & Ox00FFfOOFF) + ((x >> 8) & OxO00FfOOff);
X = (x & 0x0000ffff) + (x >> 16);

Bit Hack LRS Wiki 84/895

count leading O bits in x (8 bit):

int r = (x == 0);

if (x <= Ox0f) { r += 4; x <<= 4; }
if (x <= Ox3f) { r += 2; x <<= 2; }
if (x <= Ox7F) { r += 1; }

count leading O bits in x (32 bit): Analogous to 8 bit version.

int r = (x == 0);

if (x <= Ox0000ffff) { r += 16; x <<= 16; }
if (x <= OxO0Fffffff) { r += 8; x <<= 8;

if (x <= OxOFfffffff) { r += 4; x <<= 4;

if (x <= OX3fFfffff) { r += 2; x <<= 2; }
if (x <= Ox7fffffff) { r += 1; }

divide x by 2N: x >> N

divide x by 3 (unsigned at least 16 bit, x < 256): ((x + 1) * 85) >> 8, we use kind of a fixed point
multiplication by reciprocal (1/3), on some platforms this may be faster than using the divide instruction, but
not always (also compilers often do this for you). { | checked this particular trick and it gives exact results for
any x < 256, however this may generally not be the case for other constants than 3. Still even if not 100%
accurate this can be used to approximate division. ~drummyfish }

divide x by 5 (unsigned at least 16 bit, x < 256): ((x + 1) * 51) >> 8, analogous to divide by 3.

get Nth bit of x: (x >> N) & 0x01

is x a power of 2?: x & ((x & (x - 1)) == 0)

is x even?: (x & 0x01) ==

is x odd?: (x & 0x01)

isolate rightmost O bit of x: ~x & (x + 1)

isolate rightmost 1 bit of x: x & (~x + 1) (in fwo's complement equivalentto x & -x)

log base 2 of x: Count leading 0 bits, subtract from data type width - 1.

maximumof xandy: x ~ ((0 - (x <y)) & (x ~y))

minimum of xandy: x ~ ((0 - (x >vy)) & (x ~vy))

multiply x by 2~"N: x << N

multiply by 7 (and other numbers close to 2*N): (x << 3) - X

next higher or equal power of 2 from x (32 bit):

X--3

X |=x>>1;

X |= x> 2;

X |=x > 4;

X |= x >> 8;

X |= x >> 16;

X=xXx+1+ (x ==0);
parity of x (8 bit):

X "= x> 1;

X "= X >> 2;

X = (x "~ (x > 4)) & 0x01;

Bit Hack LRS Wiki 85/895

reverse bits of x (8 bit): We switch neighboring bits, then switch neighboring groups of 2 bits, then
neighboring groups of 4 bits.

X
X
X

((x > 1) & 0x55) | ((x & 6x55) << 1);
((x >>2) & 0x33) | ((x & 0x33) << 2);
((x >> 4) & 0x0f) | (x << 4);

reverse bits of x (32 bit): Analogous to the 8 bit version.

>> 1) & 0x55555555
>> 2) & 0x33333333

((x & 0x55555555) << 1);
((x

((x >> 4) & ox0fofofof

((x

((x

(x

(x & 0x33333333) << 2);
(x & Ox0fOfOfof) << 4);
(x
(x

—_— — — ~—

|
| (
|
>> 8) & Ox00TFOOFf) | (
>> 16) & 0x0000Tfff) |

& 0x00ffOOff) << 8);
<< 16);

X X X X X
o mwonn

rotate x left by N (8 bit): (x << N) | (x >> (8 - N)) (watch out, in C: N < 8, if storing in wider type
also do & Oxff)

rotate x right by N (8 bit): analogous to left rotation, (x >> N) | (x << (8 - N))
set (to 1) Nth bitof x: x | (1 << N)

set (to 1) the rightmost O bitof x: x | (x + 1)

set or clear Nth bitof xto b: (x & ~(1 << N)) | (b << N)

sign of x (returns 1, 0 or -1): (x > 0) - (x < 0)

N N N

swap x and y (withouttmp var.): x "= y; y *= X; X "= y;0rx -=y; y += X; X =Y - X;
toggle Nth bit of x: x ©~ (1 << N)
toggle x between Aand B: (x ~ A) ~ B

x and y have different signs?: (x > 0) == (y > 0), (x <= 0) == (y <= 0) etc. (differs on 0:0
behavior)

TODO: the ugly hacks that use conversion to/from float?

See Also

e De Morgan's laws
o fast inverse square root
e optimization

bit
Bit

Bit (for binary digit, symbol b, also shannon) is the lowest commonly used unit of information, equivalent to a
choice between two equally likely options (e.g. an answer to the question "Was the coin flip heads?"), in
computers used as the smallest unit of memory, with 1 bit being able to hold exactly one value that can be
either 1 or 0. From bit a higher memory unit, byte (8 bits), is derived. In guantum computing the equivalent
of a bit is gubit, in ternary computers the analogy is trit.

Can there exist a smaller quantity of information than 1 bit? Well, yes, for sure we can get zero
information and it certainly also makes sense to speak of fractions of bits; for example one decimal digit
carries 1og2(10) ~= 3.32 bits of information. Entropy is also measured in bits and can get smaller than 1 bit,
e.g. for an unfair coin toss; an answer to the question "Will the Sun rise tomorrow?" gives less than 1 bit of
information -- in fact it gives almost no information as we know the answer will most definitely be yes,

Bit LRS Wiki 86/895

though the certainty can never be absolute. Another idea: imagine there exist two people for whom we want
to know, based on their sexes, whether they may reproduce together -- answer to this question takes 1 bit
(yes or no) and to obtain it we have to know both of these people's sexes so we can say whether they differ.
Now if we only know the sex of one of them, then in the context of the desired answer we might perhaps say
we have a half of one bit of information, as if we also know the other one's sex (the other half of the bit), we
get the whole 1 bit answer.

bitreich

Bitreich

{ Researching this on-the-go, send me corrections, thanks. ~drummyfish }

Bitreich is a small, obscure underground group/movement of programmers who greatly value
minimalism/simplicity, oppose the evil and degeneration of modern mainstream technology and aim for
making the world a better place mainly through simpler technology. They seem to belong to the cluster of
"minimalist programmer groups", i.e. they are similar to suckless (which in their manifesto they see as a
failed project), reactionary software and our very own LRS, sharing many values such as minimalism, Unix
philosophy, preference and love of the C language, carrying on some of the hacker culture heritage, though
of course they also have their own specifics that will make them different and even disagreeing with us and
others on occasion, e.g. on copyleft (unlike us, they seem to greatly prefer the GPL), terminology (yeah, they
seems to prefer "open source") and probably also things like privacy (though the craze doesn't seem to go
too far, many have listed their real names and addresses) etc.

According to the gopherhole Bitreich started on 17.8.2016 -- the founder (or at least one of them?) seems to
be 20h (Christoph Lohmann according to the user profile), a guy formerly active in suckless (can be found on
their website), who even gave an interview about Bitreich to some radio/magazine/whatever. It seems
Bitreich originated in Germany. As of 2023 they list 12 official member profiles (the number of lurker
followers will of course be a much high number, there seem to be even bitreich subcommunities in other
countries such as Italy). They are mostly present on gopher (gopher://bitreich.org), which they greatly
promote, and IRC (ircs://irc.bitreich.org:6697/#bitreich-en). There are also Tor hidden services etc.; their
website at bitreich.org seems to be purposefully broken in protest of the web horror.

Some of their ideas and philosophy seems to be very based, e.g. preference of KISS/older protocols (gopher,
ftp, IRC, ...), "users are programmers" (opposing division into users as consumers and developers as
overlords), "bug reports are patches", "programs can be finished" etc.

Bitreich is also about humor and fun (sometimes so much so that it's not clear if something is a joke or
serious stuff -- maybe because it's partly both). They invented analgram, an authentication method based on
analprints (alternative to fingerprint authentication). They put a snapshot of their source code into an actual
Arctic vault in Greenland, to be preserved for millennia. Often there appear parodies of whatever is currently
hyping in the mainstream, e.g. NETs, "big data", Al, blockchain etc. { There's also some stuff going on with
memes and cooking recipes but TBH | didn't get it. ~drummyfish }

Some interesting projects they do:

¢ Bitreichcon: annual conference, running since 2017. Their slides can be downloaded in plain text.

¢ Bitreich radio

e Day Of The GrParazyd: point and click adventure game. { Didn't even take a look at this yet, sorry,
no idea what it really is :D ~drummyfish }

* The Gopher Lawn: directory/index of gopherspace, categorizing gopherhole links.

e The Gopher Times: a very cool printable magazine (in both pdf and plain text), git clone
git://bitreich.org/tgtimes.

¢ A number of smaller utilities/programs and parody stuff (see their gopherhole).

¢ Keeping infrastructure to host stuff they see as valuable.
. e

Bitreich LRS Wiki 87/895

See Also

e suckless

e reactionary software

e less retarded software
* KISS

black

Black

Black, a color whose palitically correct name is afroamerican, is a color that we see in absence of any light.

blender

Blender

Blender (also Blunder) is a greatly complex "open-source" 3D modeling and rendering software -- one of the
most powerful and "feature-rich" ones, even compared to proprietary competition -- used not only by the
FOSS community, but also the industry (commercial games, movies etc.), which is an impressive
achievement in itself, however Blender is also a capitalist software suffering from many not-so-nice features
such as bloat, update culture, hardware discrimination and centralized control.

After version 2.76 Blender started REQUIRING OpenGL 2.1 due to its "modern" EEVEE renderer, deprecating
old machines and giving a huge fuck you to all users with incompatible hardware (for example the users of
RYF laptops). This new version also stopped working with the free Nouveau driver, forcing the users to use
NVidia's proprietary drivers. Blender of course doesn't at all care about this. { I've been forced to use the
extremely low FPS software GL version of Blender after 2.8. ~drummyfish }

Are there good alternatives to Blender? Some programs to check out are wings3d (seems like the best
candidate), k3d, meshlab and mm3d (looks like bloat), also for some things possibly FreeCAD. Remember
you can also make models manually :-) Formats like obj can be hand-written.

See Also

¢ 3D modeling

bloat

Bloat

Bloat is a very wide term that in the context of software and technology means overcomplication,
unnecessary complexity and/or extreme growth in terms of source code size, overall complexity, number of
dependencies, redundancy, unnecessary and/or useless features (e.g. feature creep) and resource usage, all
of which lead to inefficient, badly designed technology with bugs (crashes, unusable features, memory leaks,
security vulnerabilities, ...), as well as great obscurity, ugliness, loss of freedom and waste of human effort.
Simply put bloat is burdening bullshit. Bloat is extremely bad and one of the greatest technological issues of
today. Creating bloat is bad engineering at its worst and unfortunately it is what's absolutely taking over all
technology nowadays, mostly due to capitalism causing commercialization, consumerism, rushed "just
works" products, creating demand for newer hardware and so on, also allowing incompetent people ("let's
push more women/minorities into programming") trying to take on jobs they are in no way qualified to do.

A related but different term is bloatware; it's more commonly used among normie users and stands for

undesirable programs that eat up computer resources, usually being preinstalled by the computer
manufacturer etc. Further on we'll rather focus on bloat as defined before.

Bloat LRS Wiki 88/895

TODO: history of bloat?

LRS, suckless and some others rather small groups are trying to address the issue and write software that is
good, minimal, reliable, efficient and well functioning. Nevertheless our numbers are very small and in this
endeavor we are basically standing against the whole world and the most powerful tech corporations. The
issue lies not only in capitalism pushing bloat but also in common people not seeing the issue (partly due to
the capitalist propaganda promoting maximalism), no one is supporting the few people who are genuinely
trying to create good tools, on the contrary such people often face hostility from the mainstream.

The issue of bloat may of course appear outside of the strict boundaries of computer technology, nowadays
we may already observe e.g. science bloat -- science is becoming so overcomplicated (many times on
purpose, e.g. by means of bullshit science) that 99% people can NOT understand it, they have to BELIEVE
"scientific authorities", which does not at all differ from the dangerous blind religious behavior. Any time a
new paper comes out, chances are that not even SCIENTISTS from the same field but with a different
specialization will understand it in depth and have to simply trust its results. This combined with self-interest
obsessed society gives rise to soyence and large scale brainwashing and spread of "science approved"
propaganda.

Some metrics traditionally used to measure bloat include lines of source code, cyclomatic complexity
(kind of "number of ways the code may take"), programming language used (some languages are bloated
themselves and inherently incapable of producing non-bloat, also choice of language indicates the
developer's priorities, skills etc.), number of dependencies (packages, libraries, hardware, ...), binary
size (size of the compiled program), compile time, resource usage (RAM, CPU, network usage, ...),
performance (EPS, responsiveness, ...), anti features (GUI, DRM, auto updates, file formats such as XML,
...), portability, number of implementations, size of specification, number of developers and others. Some
have attempted to measure bloat in more sophisticated ways, e.g. the famous web bloat score
(https://www.webbloatscore.com/) measures bloat of websites as its total size divided by the page
screenshot size (e.g. YouTube at 18.5 vs suckless.org at 0.386). It has been observed that software gets
slower faster than hardware gets faster, which is now known as Wirth's law; this follows from Moore's
law (speed of hardware doubles every 24 months) being weaker than Gate's law (speed of software halves
every 18 months); or in other words: the stupidity of soydevs outpaces the brilliancy of geniuses.

Despite this there isn't any completely objective measure that would say "this software has exactly X % of
bloat", bloat is something judged based on what we need/want, what tradeoffs we prefer etc. The answer to
"how much bloat" there is depends on the answer to "what really is bloat?". To answer this question most
accurately we can't limit ourselves to simplifications such as lines of code or number of package
dependencies -- though these are very good estimates for most practical purposes, a more accurate insight
is obtained by carefully asking what burdens and difficulties of ANY kind come with given technology, and
also whether and how much of a necessary evil they are. Realize for example that if your software doesn't
technically require package X to run or be compiled, package X may be de facto required for your software to
exist and work (e.g. a pure multiplayer game client won't have the server as a dependency, but it will be
useless without a server, so de facto all bloat present in the server is now in a wider sense also the client's
burden). So if you've found a program that's short and uses no libraries, you still have to check whether the
language it is written in isn't bloated itself, whether the program relies on running on a complex platform
that cannot be implemented without bloat, whether some highly complex piece of hardware (e.g. GPU or 8GB
of RAM) is required, whether it relies on some complex Internet service etc. You can probably best judge the
amount of bloat most objectively by asking the following: if our current technology instantly disappeared,
how hard would it be to make this piece of technology work again? This will inevitably lead you to
investigating how hard it would be to implement all the dependencies etc.

For a quick overview let us average some data over time -- the table that follows shows growth of system
requirements and sizes and averages them to give an estimate of bloat ratio with respect to the first row.
Please note some data in the table may not be completely accurate, interpolation/extrapolation was used for
missing values, we're only making an estimate after all, but still notice our computing resource usage
already grew almost 2000 times despite computers being generally slower and less responsive.

Windows min RAM Debian min FPS game min RAM
MB/CPU MHz/HDD RAM MB/HDD MB/CPU MHz/HDD
MB MB MB

Blender % of
(win zip KB) base

avg. webpage

year - size (KB)

Bloat LRS Wiki 89/895

avg. webpage

year — size (KB)

1993 4
1994 8
1995 14

1996 23

1997 34
1998 44

1999 53
2000 63
2001 74
2002 83
2003 93
2004 115
2005 189
2006 212
2007 260
2008 312
2009 443
2010 481
2011 657
2012 831
2013 1102
2014 1249
2015 1466
2016 1502
2017 1681

2018 1848
2019 1980

Bloat

Windows min RAM
MB/CPU MHz/HDD RAM MB/HDD
MB

MB
3,25,9
3,25,9
12, 25,90

16, 33, 128

16, 33, 128
16, 33, 128

32,133, 1000

32,133, 1000

64, 233, 1500

64, 233, 1500

64, 233, 1500

64, 233, 1500

64, 233, 1500

384, 800, 15000

384, 800, 15000

384, 800, 15000

1024, 1000, 16000

1024, 1000, 16000

1024, 1000, 16000

1024, 1000, 16000

1024, 1000, 16000

1024, 1000, 16000

1024, 1000, 32000

4096, 1000, 64000

4096, 1000, 64000

4096, 1000, 64000
4096, 1000, 64000

Debian min

4, 20
4, 20
4, 20

4, 80

4, 90
4,90

5,100

5,100

5,100

12,110

12,120

12, 150

24, 450

24, 450

64, 1000

64, 1000

64, 1000

64, 1000

64, 1000

64, 1000

64, 1000

64, 1000

128, 2000

128, 2000

128, 2000

128, 2000
550, 850

LRS Wiki

FPS game min RAM
MB/CPU MHz/HDD

MB
4, 30, 24 (Doom)
4, 33, 15 (Heretic)
4, 33, 16 (Descent)

8, 66, 25 (Duke Nukem

3D)

16, 90, 25 (Quake II)
24, 133, 400 (Half Life)
64, 233, 70, 8M GPU

(Quake I11)

32, 233, 200, 4M GPU

(Daikatana)

64, 300, 600, OGL GPU

(Serious Sam)

256, 500, 2000, 32M

GPU (UT 2003)

128, 600, 1400, 32M

GPU (COD)

256, 1200, 6000, DX7

GPU (HL2)

512, 1700, 5000, 64M

GPU (FEAR)

512, 2000, 2000, 64M

GPU (Prey)

1024, 2000, 12000,
64M GPU (Crysis)
1024, 2600, 12000,
256M GPU (FC2)

2048, 2400, 13000,
128M GPU (LFD2)

2048, 2400, 11000,
256M GPU (BS2)

2048, 3000, 8000,
128M GPU (Portal2)

2048, 2600, 15000,
512M GPU (FC3)

3000, 2400, 17000, 1G

GPU (Crysis 3)

4096, 2600, 30000, 1G

GPU (FC4)

6000, 2900, 60000, 1G

GPU (CODBO3)

8192, 3100, 45000, 2G

GPU (Doom?2016)

8192, 3300, 90000, 2G

GPU (CODWW?2)

8192, 3100, 40000, 2G

GPU (FC5)

6000, 3400, 75000, 2G

GPU (BL3)

Blender

% of

(win zip KB) base

100 (extrap.) 100

172
307

442

577
712

849

1170

1323

1501

1704

4399

6353

7277

8639

12778

13683

25059

32398

45786

67787

81676

104139

107840

116121

113915
153290

114
263

412

486
715

1817

1848

2863

4055

3569

6345

7296

22589

28667

29411

36063

36462

36586

41143

47168

57147

95734

141286

161379

140675
154626

90/895

Windows min RAM Debian min FPS game min RAM

avg. webpage Blender % of

year size (KB) I\/IB/CPUMI\gHZ/HDD RAM ::A/IS/HDD I\/IB/CPUMI\gHZ/HDD (win zip KB) base
2020 2042 4096, 1000, 64000 550, 850 gID%Z('[folfr?\': 2?000' 4G 197632 154179
2021 2173 4096, 1000, 64000 780, 920 2}332(,%16%0, 60000, 4G 551865 161706
2022 2280 4096, 1000, 64000 780, 920 8192, 3300, 125000, 5 4,77 191785

2G GPU (CODMWEF?2)
One of a very frequent questions you may hear a noob ask is "How can bloat limit software freedom if
such software has a free (or "EOSS") license?" Bloat de-facto limits some of the four essential freedoms
(to use, study, modify and share) required for a software to be free. A free license grants these freedoms
legally, but if some of those freedoms are subsequently limited by other circumstances, the software
becomes effectively less free. It is important to realize that complexity itself goes against freedom
because a more complex system will inevitably reduce the number of people being able to execute freedoms
such as modifying the software (the number of programmers being able to understand and modify a trivial
program is much greater than the number of programmers being able to understand and modify a highly
complex million LOC program). This is not any made up reason, it is actually happening and many from the
free software community try to address the issue, see e.g. HyperbolaBSD policies on accepting packages
which rejects a lot of popular "legally free" software on grounds of being bloat (systemd, dbus, zstd,
protobuf, mono, https://wiki.hyperbola.info/doku.php?id=en:philosophy:incompatible_packages). As the
number of people being able to execute the basic freedom drops, we're approaching the scenario in which
the software is de-facto controlled by a small number of people who can (e.g. due to the cost) effectively
study, modify and maintain the program -- and a program that is controlled by a small group of people (e.g. a
corporation) is by definition proprietary. If there is a web browser that has a free license but you, a lone
programmer, can't afford to study it, modify it significantly and maintain it, and your friends aren't able to do
that either, when the only one who can practically do this is the developer of the browser himself and
perhaps a few other rich corporations that can pay dozens of full time programmers, then such browser
cannot be considered free as it won't be shaped to benefit you, the user, but rather the developer, a
corporation.

How much bloat can we tolerate? We are basically trying to get the most for the least price. The
following diagram attempts to give an answer:

external
"richness"

shiny : :
bullshit | NO : YES : NO

luxury

very
useful

/ S ..
/ : path of degeneracy

useful

A

I

I

I

| : :
| : e /
| :

I

I

I

I

I

I

I

I

does : :
NOthing +---- - > internal complexity
trivial simple solo big huge gigantic
manageable

The path of degeneracy drawn in the graph shows how from a certain breaking point (which may actually
appear at different places, the diagram is simplified) many software projects actually start getting less
powerful and useful as they get more complex -- not all, some project really do stay on the path of increasing
their "richness", but this requires great skills, experience, expertise and also a bit of lucky circumstances; in
the zone of huge complexity projects start to get extremely difficult to manage -- non-primary tasks such as
organization, maintenance and documentation start taking up so many resources that the primary task of

Bloat LRS Wiki 91/895

actually programming the software suffers, the project crumbles under its own weight and the developers
just try to make it fall slower. This happens mostly in projects made by incompetent soydevs, i.e. most
today's projects. { Thanks to a friend for pointing out this idea. ~drummyfish }

Please note there may arise some disagreement among minimalist group about where the band is drawn
exactly, especially old Unix hackers could be heard arguing for allowing (or even requiring) even trivial
programs, maybe as long as the source code isn't shorter than the utility name, but then the discussion
might even shift to questions like "what even is a program vs what's just a 10 characters long line" and so
on.

As a quick heuristic for judging programs you can really take a look at the lines of code (as long as you know
it's a simplification that ignores dependencies, formatting style, language used etc.) and use the following
classes (basically derived from how suckless programs are often judged):

e < 10: Extremely small but may be useful, may be also too trivial for such small size to be justifiable,
can aim to be completely bug-free. Example could be the cat program.

¢ 11 to 100: Very small, can be debugged to a great level, many greatly useful utilities, e.g.
compression programs, may fit this class.

¢ 101 to 1000: Small "bigger" kinds of programs, often very minimalist implementations of programs
that are usually not minimalist in nature like window managers, interactive text editors, web browsers
and so on. Simplified version of comun language, called minicomun, fits here.

¢ 1001 to 5000: Still considered small, a bit more "feature rich" kind of previous class, you may find
minimalist 3D games here, quite powerful programming languages, libraries handling complex file
formats (that weren't designed to be minimalist) etc. Currently a lot of LRS programs like SAF,
small3dlib and comun would fall here.

¢ 5001 to 10000: Often imposed upper limit on suckless programs, these programs aren't the smallest
possible but may still be called minimalist, they are easily manageable by a single man without much
hassle, anyone can modify them and there is a comfortable margin for implementing many "comfort"
and fancy features that aren't complete BS. Anarch might be given as an example (if we subtract lines
of code taken by game data and count only pure engine code).

¢ 10001 to 100000: Here things start to be called real bloat but may still be accepted as a compromise,
not an "insanely bloated" program, we have to judge on a case by case basis as the transition towards
bloat is gradual, but generally projects here must focus on not growing bigger, priority should be on
minimizing. We have to consider anything here bloat unless proven otherwise. Minimalist projects end
up here when trying to combine minimalism with some mainstream concept, e.g. implementing a
complete operating system with all the standard features, trying to reimplement some mainstream,
non-minimalist program etc. Example is tcc, the C compiler that has a little over 20000 LOC. Also
many "good old" mainstream programs like Doom fall here.

e more: Basically just bloat, some operating systems can perhaps argue they are comparatively small
even within this category, but as a matter of fact very few people can manage a codebase this big,
issues of bloat start to play a very significant role here, the project should most likely be split or
rewritten from scratch in much more simplified way.

Yes, bloat is also unecological and no, it cannot be fixed by replacing fossil fuel cars with cars that run on
grass and plastic computers by computers made from recycled cardboards mixed with composted horse shit.
It is the immense volume of human ACTIVITY that's required by the bloated technology all around the globe
that's inherently unecological by wasting so much effort, keeping focus on maximalism, growth and
preventing us from frugality and minimizing resource waste. Just as any other bullshit that requires immense
resources to just keep maintaining -- great complexity is just absolutely incompatible with ecology and as
much as you dislike it, to achieve truly eco-friendly society we'll have to give up what we have now in favor
of something orders of magnitude more simple and if you think otherwise, you are just yet too
unexperienced (or remained purposefully ignorant) to have seen the big picture already. Consider that your
program having bullshit dependencies such as Python, JavaScript, C++, Java, OpenGL, Vulkan, GPU, VR sets,
gigabytes of RAM etcetc. requires having the inherently unecological system up, it needs millions of people
doing bullshit jobs that are inherently wasting resources, increasing CO2 and making them not focus on
things that have to be done -- yes, even if we replace plastic straws with paper straws. All those people that
make the thousand pages standards that are updated every year, reviews of those standards, writing tons
and tons of tests for implementations of those standards, electing other people to make those standards,
testing their tests, implementing the standards themselves, optimizing them, all of that collectively needing
many billions of lines of code and millions of hours of non-programming activities, it all requires complex

Bloat LRS Wiki 92/895

bureaucracy, organization and management (complex version control systems, wikis, buildings, meeting
spaces, ...) and communication tools and tons of other bullshit recursively spawning more and more waste --
all of these people require cars to go to work every day (even if some work from home, ultimately only a few
can work from home 100% of the time and even so millions others need to physically go to factories to make
all those computers, electricity, chair, food and other things those people need), they require keeping a high
bandwidth 100% uptime global Internet network maintained, all of this requiring extra buildings, offices,
factories, roads, buildings for governments overseeing the building of those buildings, maintenance of those
roads etcetc. A newbie programmer (99.99999% programmers in the field nowadays) just don't see all this
because they lack the big picture, a woman forced into programming has hard time comprehending an if
statement, how do you expect her to see the deep interconnections between technology and society -- she
may know that OpenGL is "something with graphics" and it's just there on every computer by default, she
can't even picture the complexity that's behind what she sees on the screen. Hence the overall retardation.
You just cannot have people living ecologically and at the same time have what we have now. So yes, by
supporting and/or creating bloat you are killing the planet, whether you agree with it or not. No, you can't
find excuses out of this, no, paper straws won't help, just admit you love point and click "programming
without math" of your own shitty Minecraft clones in Godot even for the price of eliminating all life on Earth,
that's fine (no it's not but it's better to just not bullshit oneself).

{ Fucking hell this shit has gone too far with the newest supershit gayme called Cities Skyline Il, | literally
can't anymore, apparently the game won't run smoothly even on Earth's most advanced supercomputer
because, as someone analyzed, the retarddevs use billion poly models for pedestrians without any LOD, | bet
they don't even know what it is, they probably don't even know what a computer is, these must be some
extra retarded soy idiots making these games now. Though | knew it would come to this and that it will be
getting yet much worse, | am always still surprised, my brain refuses to believe anyone would let such a
piece or monstrous shit to happen. This just can't be real anymore. ~drummyfish }

Typical Bloat

The following is a list of software usually considered a good, typical example of bloat. However keep in mind
that bloat is a relative term, for example vim can be seen as a minimalist suckless editor when compared to
mainstream software (IDEs), but at the same time it's pretty bloated when compared to strictly suckless
programs.

¢ Web since the onset of "web 2.0" has been steadily becoming more and more bloated with things
such as Adobe Flash and JavaScript (and billions of its web frameworks). By today the situation about
web bloat is reaching almost unbearable levels, especially in modern sites such as YouTube. For a
great read see The Website Obesity Crisis.

¢ Ads, spyware, DRM, anti-cheats, anti-viruses, anti-sharing, anti-repair and other anti-user "features"
are bloat.

¢ Desktop environments such as KDE and GNOME. The concept of a desktop environment itself is often
considered bloat.

e Windows: one of the best examples of how software should NOT be done.

¢ Blender: quite useful EQSS 3D editor which however integrates things like a whole video editor, game
engine, several renderers, scripting language with text editor and so on.

e CMake: gigantic build system that currently sits on top of a sky-high sandwich of other build systems,
its number of dependencies is bigger than the number of retards in observable universe (known as
drummyfish's number).

e D-Bus

e Docker

¢ Electron: GUI framework infamous for its huge resource consumption.

o flatpak: Absolutely horrible "application distribution/execution platform???" with pakcage
management, sandboxes and all that kind of shit.

e Systemd: Huge anti-unix do-it-all system taking over GNU/Linux.

¢ Virtual machines/environments/sandboxes, big abstraction sandwiches (e.g. program running in an
interpreter running in a sandbox inside web browser that's running in a virtual machine that's running
on an operating system).

e Firefox, Chromium and other mainstream web browsers.

¢ Java, Python and similar languages.

¢ IDEs such as VSCode or NetBeans.

¢ Big game engines such as Unreal, Unity or Godot.

Bloat LRS Wiki 93/895

¢ Practically all commercial games made in the 21st century such as World of Warcraft, Call of Duty etc.
¢ pulse audio

o office programs (e.g. M$ Office and LibreOffice) and a lot of rich text

¢ Neural networks aka "Al" that is forced into everything nowadays.

Some of these programs may be replaced with smaller bloat that basically does the same thing (e.q.
produces the same output) just with less bullshit around, for example Libreoffice with Ted, Godot with Irrlicht,
Firefox with badwolf etc., however many times the spectacular pompous results these programs produce just
cannot essentially be reproduced by anything minimal, wanting to achieve this is really a beginner mistake,
the same as wanting to achieve the "Windows experience" on a GNU system. You will never be able to make
an Unreal Engine style graphics with a minimalist game engine, just like you won't be able to shoot up your
school with well written poetry (in both cases the former is something bad that however most Americans
want to do, the latter is something truly good they should want instead). To truly get rid of bloat one has to
become able to use truly minimal programs; this means unlearning the indoctrination that "bigger results are
better", one has to understand that minimal results themselves are superior AND in addition allow using
superior programs (i.e. minimal ones).

Medium And Small Bloat

Besides the typical big programs that even normies admit are bloated there exists also a smaller bloat which
many people don't see as such but which is nevertheless considered unnecessarily complex by some experts
and/or idealists and/or hardcore minimalists, including us.

Small bloat is a subject of popular jokes such as "OMG he uses a unicode font -- BLOAT!!!". These are good
jokes, it's nice to make fun out of one's own idealism. But watch out, this doesn't mean small bloat is only a
joke concept at all, it plays an important role in designing good technology. When we identify something as
small bloat, we don't necessarily have to completely avoid and reject that concept, we may just try to for
example make it optional. In context of today's PCs using a Unicode font is not really an issue for
performance, memory consumption or anything else, but we should keep in mind it may not be so on much
weaker computers or for example post-collapse computers, so we should try to design systems that don't
depend on Unicode.

Also remember that relatively small libraries for things that are easily done without a library, such as fixed
point arithmetic, are also bloat.

Small/medium bloat includes for example:

¢ floating point (complex standard with design issues, requires special hardware for acceleration, fixed
point is better)

¢ config files (and other unnecessary file I/O that requires a file 1/0 library, not all computers have file
systems, configs should be part of source code)

o directories (just have all files on the same level and prefix their file names to organize them)

e library linking (header only libraries are better)

e any GPU, OpenGL (complex hardware and specifications, not all computers have complex GPUs,
software rendering is better)

¢ Unicode (big specification requiring special libraries and big fonts, ASCIl is better)

¢ antialiasing (just ignore aliasing, use low resolution textures etc.)

¢ 64 bit architectures (they only exist to allow ungodly amounts of RAM, 32 bits completely suffice for
any computation, many times even 16 or 8 bits are enough)

¢ proportional font (fixed width font is better)

e linking, build systems/scripts, makefiles, directories and multiple source code files (just using a
compiler or a few-line building shell script, single file source code, header only libraries and single
compilation unit programs are better)

¢ infix notation (postfix notation is better)

e any GUI, window managers (pure text mode is better)

e operating system (bare metal is better)

e multithreading, parallelism, virtual memory, ...

e encryption, security, memory safety (just don't care and/or don't handle sensitive data with
computers connected to the internet, don't live in a shitty society)

Bloat LRS Wiki 94/895

e X11 (just pure screen drawing is better)

¢ database software (plain files are better, see flatfile)

¢ C (something in between C and brainfuck would is likely ideal, e.g. comun or Forth)
e glibc, gcc, clang etc. (better alternatives are tcc, musl, uclibc etc.)

¢ letter accents/diacritics (can normally be ignored in most languages that use them)
* jpg, png, svg and similar formats (e.g. ppm or farbfeld is better)

e syntax highlight, text formatting, rich text and just colors anywhere they aren't absolutely necessary

e html, markdown (plain text is better)

¢ x86 instruction set (TODO: what's better? probably some RISC)

e any non-public-domain license (any legal burden introduced by a license is unnecessary bloat)
e dynamic linking/libraries (static linking is better, see Stali)

e web 1.0, gemini (gopher or ETP is better)

e mouse (keyboard is better)

¢ TCP (UDP is probably better)

e vim (things like ed are probably better?)

e sound (picture is usually enough)

¢ high resolution (640x480 is probably the maximum you'll ever need, lower resolution takes less RAM

and makes rendering faster)

e true color (256 colors, e.g. 332 palette, is better, even 1 bit displays suffice for most things), high EPS

(25 is more than enough), high resolution (320 x 240 is more than enough) etc.

e GNU Unix utils (things like busybox or sbase are probably better)

e data types (untyped or single type is better, everything can be just a number)

e package managers (just don't use them, install just a few programs manually, or at least make
package managers as simple as possible)

e electricity (mechanical computers may be just fine)

e computers (pen and paper or counting with rocks is better)

e anything wireless (wifi, mice, ...)

[)

Non-Computer Bloat

The concept of bloat can be applied even outside the computing world, e.g. to non-computer technology, art,

culture, law etc. Here it becomes kind of synonymous with bullshit, but using the word bloat says we're
seeing the issue from the point of view of someone acquainted with computer bloat. Examples include:

e clothes

¢ decorations (body, house, ...)

e cars

¢ using languages other than English or Esperanto

¢ luxury (big house, yacht with a swimming pool, ...)
¢ having electricity at home

See Also

e harmful

e maximalism

e shitware

e obscurity

e shit

e cyclomatic complexity

bloat_monopoly

Bloat Monopoly

Bloat monopoly is an exclusive control over or de-facto ownership of software or even a whole area of
technology not by legal means but by means of bloat, or generally just abusing bloat in ways that lead to

Bloat Monopoly LRS Wiki 95/895

gaining monopolies, e.g. by establishing standards or even legal requirements (such as the EU mandatory
content filters) which only the richest may conform to. Even if given software is EQSS (that is its source code
is public and everyone has basic legal rights to it), it can be malicious due to bloat, for example it can still be
made practically controlled exclusively by the developer because the developer is the only one with
sufficient resources and/or know-how to be able to execute the basic rights such as meaningful modifications
of the software, which goes against the very basic principle of free software.

Example: take a look at the web and how Google is gaining control over it by getting the search engine
monopoly. It is very clear web along with web browsers has been becoming bloated to ridiculous levels -- this
is not a coincidence, bloat is pushed by corporations such as Google to eliminate possible emerging
competition. If practically all websites require JavaScript, CSS, HTTPS and similar nonsense, it is becoming
much more difficult to crawl them and create a web index, leaving the possibility to crawl the web mostly to
the rich, i.e. those who have enough money, time and know-how to do this. Alongside this there is the web
browser bloat -- as websites have become extremely complex, it is also extremely complex to make and
maintain a web browser, which is why there is only a few of them, all controlled (despite FOSS licenses) by
corporations and malicious groups, one of which is Google itself. For these reasons Google loves bloat and
encourages it, e.g. simply by ranking bloated webpages better in their search results, and of course by other
means (sponsoring, lobbying, advertising, ...).

Bloat monopoly is capitalism's circumvention of free licenses and taking advantage of their popularity. With
bloat monopoly capitalists can stick a EOQSS license to their software, get an automatic approval
(openwashing) of most "open-source" fanbois as well as their free work time, while really staying in control
almost to the same degree as with proprietary software.

At the time of writing this if you want to compile so called "open source" Android, you will need a computer
with at least 400 GB of space, 16 GB of RAM (but recommended is 32 or 64), a modern 64 bit CPU with
multiple cores, and many hours of computational time. How long before we need a million dollar
supercomputer to compile an "open source" program? Now ask yourself, is this still real freedom?

Examples of bloat monopoly include mainstream web browsers (furryfox, chromium, ...), Android, Linux,
Blender etc. This software is characteristic by its difficulty to be even compiled, yet alone understood,
maintained and meaningfully modified by a lone average programmer, by its astronomical maintenance cost
that is hard to pay for volunteers, and by aggressive update culture.

boat

Boat Dock

WELCOME :) You find yourself on a strange island.

What is this? Boat is a LRS spinoff of Tour Bus, a famous wiki webring -- see
http://meatballwiki.org/wiki/TourBus. Why not join Tour Bus? Because we are antisocial and don't wanna talk
to anyone, so we just start our new thing (also they would prolly censor us). Also our island is isolated from
the normieland and no buses go here :)

On To The Island

You get greeted by a friendly dog -- WOOF --playfully waggling his tail he leads you around, along the beach.
The island seems a bit empty but a few people can be seen here and there loosely associating, looking very
passionate about creating various things, some are writing, some constructing weird machines, some
copulating. Everyone is naked -- "clothes are bloat" says a weirdo of caveman appearance sitting in front of
what appears to be his hut. "We are trying to create stuff, mostly with computers", he says, "also hiding here

Boat Dock LRS Wiki 96/895

from the hell out there, trying to live a better life". He scratches his butt and adds: "Seeing you are a living
being like myself -- that means you are welcome, come join us if you want.”

sightseeing:

e less retarded software: what we create

¢ less retarded society: what we strive for
e capitalism: what we oppose

¢ jokes: we also try to have some fun fun

Continue Elsewhere

e boat #1: Tour Bus Stop: meatballwiki, normieland (the main hub of Tour Bus)
e poat #2: [YOUR LINK HERE] :-) TODO, here will be some kinda site related to LRS

How To Join Our Boat Tour

Just link to this site from your site. If you want your site added here as a new departure boat, send me an
email -- it's ideal if it's a wiki or something that has something to do with LRS (even remotely, no need to
mention LRS, can be just software minimalism or whatever, ...). | don't promise to add everything, but
it's pretty likely I'll add you if it's not a complete shit :D When (more like if) a few boats are here, other ones
should be added further on to the chain, not here. Remember this isn't supposed to be a link dump but a
selection of some kinda thematic quality links that form some nice webring.

body_shaming

Body Shaming

Your body sucks.

books

Books

Here there will be a constantly WIP list of books that might be of interest to supporters of LRS:

{ Let's aim for quality rather than quantity here, don't put any book that has some connection to our cause
here, but rather the ones you've read and which you judge as a quality book that enriched you in some way.
~drummyfish }

¢ Blackout (2017, Elsberg): Fiction, telling a story of a large blackout in Europe that shows to really be
caused by bloated tech. For collapse enjoyers this is an interesting read if only for the detailed
description of the consequences a sudden loss of electric power.

¢ Day of the Triffids (1951, Wyndham): Excellent sci-fi in which civilization comes to an end due to a
disaster (won't spoil), very nice for collapse preps or just people enjoying a great story narrated in
captivating way :-) The movie is a joke, don't even search for it. Also other books by Wyndham are
awesome.

¢ Einstein: His Life and Universe (Isaacson, 2008): Einstein's biography, quite a nice read about a
pretty awesome man who's image has been so distorted by the mainstream shit.

¢ Encyclopedia Britannica 11th edition (1911): Extremely large, old, uncensored encyclopedia,
mostly digitized and fulltext searchable, also completely public domain, with very long articles on all
topics up to the date of its publication. Great source of lesser known information and an alternative to
modern censored sources. Also check out other similar encyclopedias.

¢ Flatland (Abbott, 1884): Absolutely amazing fantasy story set in two dimensional land with
characters being geometric shapes, while being a critic of society to a big degree, it discusses
practical and mathematical aspects of actually living in two dimensions, how the characters see, how
they build their houses etc. It is now absolutely public domain!

Books LRS Wiki 97/895

¢ Free as in Freedom (Sam Williams, 2002): Free-licensed official biography of Richard Stallman,
contains many historical details about how free software came to be, how gpen source spoiled it etc.

¢ Free Culture (Lessig, 2004): Creative-commons licensed (non-free but gratis) book by the founder of
Creative Commons and free cutlure, goes into details on how copyright became abused by capitalism,
why public domain is being smothered and why we must support free culture.

e Game Engine Black Book: Doom (Sanglard, 2019): Gratis, very nice book dissecting all the details
about the legendary Doom engine and its internals -- how it worked, why was it so fast, what hacks
went into it, written so that a reader of any programming skill (even none) will find something
interesting. A must read for fans of oldschool game programming.

e Game Engine Black Book: Wolfenstein 3D (Sanglard, 2019): Same as the Doom engine book from
the same author, just about the older game Wolfenstein 3D, also amazing.

¢ Industrial Society and Its Future (Kaczynski, 1995): A bit boring read by the famous Unabomber,
criticizing rapid technology advancement, but an important read for those who are more into politics,
if only for the memes :)

¢ ISO/IEC 9899:1999 (1999): Specification of the version of C programming language that
suckless/LRS very often uses. It's nice to skim over it to get an idea how a language is actually
specified. You'll also probably learn something new about C in the process.

¢ Just for Fun (2001): Official biography of Linus Torvalds, the original creator of Linux. It recounts
valuable historical moments with comments by Linus himself, revealing many interesting details and
also a bit of Torvalds' personality (shows some of his evil side).

e Larousse Desk Reference Encyclopedia (1995): Very nice single-volume encyclopedia that's
sorted by topic, with many nice illustrations, published back then when censorship wasn't so extreme,
provides overview of all topics of human knowledge.

¢ Masters of Doom (Kushner, 2003): Another nice book for Doom fans, this time not really technical
but rather just retelling the story of the game's development -- quite comfy, a lot if interesting trivia.

e The Jargon File (1975...): Hacker culture dictionary, a lot of wisdom, inside jokes, and things related
to oldschool hacking.

¢ Rebel Code (Moody, 2001): A bit of a mainstream view at the whole "open source" history -- though
it's a small brain business view which we have to keep in mind at all times, it's a nice introduction to
the whole FOSS world for the newcomers, as the book covers most of the relevant projects and
people.

¢ The Chrysalids (John Wyndham, 1955): Apocalyptic sci-fi about a middle-age-like deeply religious
dystopia after a nuclear war, it's among the author's best works.

¢ The Country of the Blind by H. G. Wells (1911): Very nice story, also in the public domain and
digitized online, easily accessible. Though not related to technology, it's a great food for thought as it
entertains an idea of a population of people who are completely blind which has interesting
implications for their lives, and furthermore it shows that if you place someone too competent in a
group of retards, they won't recognize his competence, in fact they'll see him as someone yet more
retarded than they are themselves.

* The Nostalgia Nerd's Retro Tech: Nice small database of all the old consoles/computers (SNES,
Amiga, C64, ...), each one with high quality photos, short summary, specs and notable games. There
is not much text, it's more like tl;drs of the most important stuff, it's an ideal overview of the old
computers for a newcomers but can also serve as a quick reference to anyone.

¢ older books by Andreas Eschbach { The new ones seemed to have some Feminist shit etc., had to
stop reading it :D ~drummyfish }, mainly Carpet Makers and Jesus Video: This is not directly
related to LRS but it feels right to mention one of the most underrated sci-fi authors here -- many LRS
followers will probably appreciate high quality sci-fi dealing with super interesting topics that are at
least loosely related to LRS. Really Eschbach is so superior to just 99% of all sci-fi you'll encounter, his
books are extremely readable, believable and greatly interesting in choosing topics, he makes you
think about society, religion etcetc. Spoilers probably won't help, just go check out the books.

¢ The Pig and the Box (MCM, 2009): A short story for kids showing the dangers of DRM, released
under CCO!

¢ The Tao of Programming (James, 1987): Famous piece of hacker culture literature, wisdom of
programming written in taoist style.

¢ Tricks of the Game Programming Gurus (1994): Very nice, readable book, that implements a
whole 90s shooter game in C, without drowning the reader in tons of equations and smartass talk. It's
written with the 90s mindset and in common language, contains many practical tricks for optimizing
the code etc.

Books LRS Wiki 98/895

{ TODO (have to read first): Lisp From Nothing (implementing minimal self-hosted Lisp, CCO code!).
~drummyfish }

boot

Boot

See bootstrapping.

bootstrap

Bootstrap/Boot

In general bootstrapping (from the idiom "pull yourself up by your bootstraps"), sometimes shortened to just
booting, refers to a clever process of self-establishing some relatively complex system starting from
something very small, without much external help. As an example imagine something like a "civilization
bootstrapping kit" that contains only few primitive tools along with instructions on how to use those tools to
mine ore, turn it into metal out of which one makes more tools which will be used to obtain more material
and so on up until having basically all modern technology and factories set up in relatively short time
(civboot is a project like this). The term bootstrapping is however especially relevant in relation to computer
technology -- here it has two main meanings:

¢ The process by which a computer starts and sets up the operating system after power on, which often
involves several stages of loading various modules, running several bootloaders etc. This is
traditionally called booting (rebooting means restarting the computer).

¢ Utilizing the principle of bootstrapping for making greatly independent software, i.e. software that
doesn't depend on other software as it can set itself up. This is usually what bootstrapping (the
longer term) means. This is also greatly related to self hosting, another principle whose idea is to
"implement technology using itself".

Bootstrapping: Making Dependency-Free Software

Bootstrapping as a general principle can aid us in creation of extremely free technology by greatly
minimizing all its dependencies, we are able to create a small amount of code that will self-establish our
whole computing environment with only very small effort during the process. The topic mostly revolves
around designing programming language compilers, but in general we may be talking about bootstrapping
whole computing environments, operating systems etc.

Why be concerned with bootstrapping when we already have our systems set up? There are many
reasons, one of the notable ones is that we may lose our current technology due to societal collapse, which is
not improbable, it keeps happening throughout history over and over, so many people fear (rightfully so) that
if by whatever disaster we lose our current computers, Internet etc., we will also lose with it all modern art,
data, software we so painfully developed, digitized books, inventions and so on; not talking about the horrors
that will follow if we're unable to quickly reestablish our computer networks we are so dependent on. Setting
up what we currently have completely from scratch would be extremely difficult, a task for centuries -- just
take a while to consider all the activity and knowledge that's required around the globe to create a single
computer with all its billions of lines of code worth of software that makes it work. Knowledge of old
technology gets lost -- to make modern computers we first needed older, primitive computers, but now that
we only have modern computers no one remembers anymore how to make the older computers -- if we lose
the current ones, we won't be able to make them, we will lack the tools. Another reason for bootstrapping is
independence of technology which brings e.g. freedom (your operating system being able to be set up
anywhere without some corporation's proprietary driver or hardware unit is pursued by many), robustness,
simplicity, ability to bring existing software to new platforms and so on, i.e. things that are practical even in
current world.

Forth has traditionally been used for making bootstrapping environments; Dusk OS is an example
of such project. Similarly simple language such as Lisp and comun will probably work too.

Bootstrap/Boot LRS Wiki 99/895

How to do this then? To make a computing environment that can bootstrap itself you can do it like this:

1. Make a simple programming language L. You can choose e.g. the mentioned Forth but you can
even make your own, just remember to keep it extremely simple -- simplicity of the base language is
the key feature here. The language will serve as tool for writing software for your platform, i.e. it will
provide some comfort in programming (so that you don't have to write in assembly) but mainly it will
be an abstraction layer for the programs, it will allow them to run on any hardware/platform. The
language therefore has to be portable; it should probably abstracts things like endianness, native
integer size, control structures etc., so as to work nicely on all CPUs, but it also mustn't have too
much abstraction (such as OOP) otherwise it will quickly get complicated. The language can compile
e.g. to some kind of very simple bytecode that will be easy to translate to any assembly. At first you'll
have to temporarily implement L in some already existing language, e.g. C. NOTE: in theory you could
just make bytecode, without making L, and just write your software in that bytecode, but the
bytecode has to focus on being simple to translate, i.e. it will e.g. likely have few opcodes, which will
be in conflict with making it at least somewhat comfortable to program on your platform. However
one can try to make some compromise and it will save the complexity of translating language to
bytecode, so it can be considered (uxn seems to be doing this).

2. Write L in itself, i.e. self host it. This means you'll use L to write a compiler of L that outputs L's
bytecode. Once you do this, you have a completely independent language and can throw away the
original compiler of L written in another language. Now compile L with itself -- you'll get the bytecode
of L compiler. At this point you can bootstrap L on any platform as long as you can execute the L
bytecode on it -- this is why it was crucial to make L and its bytecode very simple. In theory it's
enough to just interpret the bytecode but it's better to translate it to the platform's native machine
code so that you get maximum efficiency (the nature of bytecode should make it so that it isn't really
more diffiult to translate it than to interpret it). If for example you want to bootstrap on an x86 CPU,
you'll have to write a program that translates the bytecode to x86 assembly; if we suppose that at the
time of bootstrapping you will only have this x86 computer, you will have to write the translator in
x86 assembly manually. If your bytecode really is simple and well made, it shouldn't be hard though
(you will mostly be replacing your bytecode opcodes with given platform's machine code opcodes).

3. Further help make L bootstrapable. This means making it even easier to execute the L bytecode
on any given platform -- you may for example write the bytecode translators for common platforms
like x86, ARM, RISC-V and so on. At this point you have L bootstrappable without any work on the
platform you have translators for and on others it will just take a tiny bit of work to write its own
translator.

4. Write everything else in L. This means writing the platform itself and software such as various
tools and libraries. You can potentially even use L to write a higher level language for yet more
comfort in programming. Since everything here is written in L and L can be bootstrapped, everything
here can be bootstrapped as well.

Booting: Computer Starting Up

Booting as in "staring computer up" is also a kind of setting up a system from the ground up -- we take it for
granted but remember it takes some work to get a computer from being powered off and having all RAM
empty to having an operating system loaded, hardware checked and initialized, devices mounted etc.

Starting up a simple computer -- such as some MCU-based embedded open console that runs bare metal
programs -- isn't as complicated as booting up a mainstream PC with an gperating system.

First let's take a look at the simple computer. It may work e.g. like this: upon start the CPU initializes its
registers and simply starts executing instructions from some given memory address, let's suppose 0 (you will
find this in your CPU's data sheet). Here the memory is often e.g. flash ROM to which we can externally
upload a program from another computer before we turn the CPU on -- in game consoles this can often be
done through USB. So we basically upload the program (e.g. a game) we want to run, turn the console on
and it starts running it. However further steps are often added, for example there may really be some small,
permanently flashed initial boot program at the initial execution address that will handle some things like
initializing hardware (screen, speaker, ...), setting up interrupts and so on (which otherwise would have to
always be done by the main program itself) and it can also offer some functionality, for example a simple
menu through which the user can select to actually load a program from SD card to flash memory (thanks to
which we won't need external computer to reload programs). In this case we won't be uploading our main
program to the initial execution address but rather somewhere else -- the initial bootloader will jump to this

Bootstrap/Boot LRS Wiki 100/895

address once it's done its work.

Now for the PC (the "IBM compatibles"): here things are more complicated due to the complexity of the
whole platform, i.e. because we have to load an operating system first, of which there can be several, each
of which may be loadable from different storages (harddisk, USB stick, network, ...), also we have more
complex CPU that has to be set in certain operation mode, we have complex peripherals that need complex
initializations etcetc. Generally there's a huge bloated boot sequence and PCs infamously take longer and
longer to start up despite skyrocketing hardware improvements -- that says something about state of
technology. Anyway, it usually it works like this:

{ I'm not terribly experienced with this, verify everything. ~drummyfish }

1. Computer is turned on, the CPU starts executing at some initial address (same as with the simple
computer).

2. From here CPU jumps to an address at which stage one bootloader is located (bootloader is just a
program that does the booting and as this is the first one in a line of potentially multiple bootloaders,
it's called stage one). This address is in the motherboard ROM and in there typically BIOS (or
something similar that may be called e.g. UEFI, depending on what standard it adheres to) is
uploaded, i.e. BIOS is stage one bootloader. BIOS is the first software (we may also call it firmware)
that gets run, it's uploaded on the motherboard by the manufacturer and isn't supposed to be
rewritten by the user, though some based people still rewrite it (ignoring the "read only" label :D),
often to replace it with something more free (e.qg. libreboot). BIOS is the most basic software that
serves to make us able to use the computer at the most basic level without having to flash programs
externally, i.e. to let us use keyboard and monitor, let us install an operating system from a CD drive
etc. (It also offers a basic environment for programs that want to run before the operating system, but
that's not important now.) BIOS is generally different on each computer model, it normally allows us
to set up what (which device) the computer will try to load next -- for example we may choose to boot
from harddisk or USB flash drive or from a CD. There is often some countdown during which if we
don't intervene, the BIOS automatically tries to load what's in its current settings. Let's suppose it is
set to boot from harddisk.

3. BIOS performs the power on self test (POST) -- basically it makes sure everything is OK, that hardware
works etc. If it's so, it continues on (otherwise halts).

4. BIOS loads the master boot record (MBR, the first sector of the device) from harddisk (or from
another mass storage device, depending on its settings) into RAM and executes it, i.e. it passes
control to it. This will typically lead to loading the second stage bootloader.

5. The code loaded from MBR is limited by size as it has to fit in one HDD sector (which used to be only
512 bytes for a long time), so this code is here usually just to load the bigger code of the second
stage bootloader from somewhere else and then again pass control to it.

6. Now the second stage bootloader starts -- this is a bootloader whose job it is normally to finally load
the actual operating system. Unlike BIOS this bootloader may quite easily be reinstalled by the user --
oftentime installing an operating system will also cause installing some kind of second stage
bootloader -- example may be GRUB which is typically installed with GNU/Linux systems. This kind of
bootloader may offer the user a choice of multiple operating systems, and possibly have other
settings. In any case here the OS kernel code is loaded and run.

7. Voila, the kernel now starts running and here it's free to do its own initializations and manage
everything, i.e. Linux will start the PID 1 process, it will mount filesystems, run initial scripts etcetc.

brainfuck

Brainfuck

Brainfuck is an extremely simple, minimalist untyped esoteric programming language; simple by its
specification (consisting only of 8 commands) but very hard to program in (it is so called Turing tarpit). It
works similarly to a pure Turing machine. In a way it is kind of beautiful by its simplicity, it is very easy to
write your own brainfuck interpreter (or compiler) -- in fact the Brainfuck author's goal was to make a
language for which the smallest compiler could be made.

There exist self-hosted Brainfuck interpreters and compilers (i.e. themselves written in Brainfuck)
which is pretty fucked up. The smallest one is probably the one called dbfi which has only slightly above 400

Brainfuck LRS Wiki 101/895

characters, that's incredible!!! (Esolang wiki states that it's one of the smallest self interpreters among
imperative languages). Of course, Brainfuck guines (programs printing their own source code) also exist,
but it's not easy to make them -- one example found on the web was a little over 2100 characters long.

The language is based on a 1964 language PA’A” which was published in a mathematical paper; it is very
similar to Brainfuck except for having no |/O. Brainfuck itself was made in 1993 by Urban Muller, he wrote a
compiler for it for Amiga, which he eventually managed to get under 200 bytes.

Since then Brainfuck has seen tremendous success in the esolang community as the lowest common
denominator language: just as mathematicians use Turing machines in proofs, esolang programmers use
brainfuck in similar ways -- many esolangs just compile to brainfuck or use brainfuck in proofs of Turing
completeness etc. This is thanks to Brainfuck being an actual, implemented and working language with I/O
and working on real computers, not just some abstract mathematical model. For example if one wants to
encode a program as an integer number, we can simply take the binary representation of the program's
Brainfuck implementation. Brainfuck also has many derivatives and modifications (esolang wiki currently lists
over 600 such languages), e.g. Brainfork (Brainfuck with multithreading), Boolfuck (has only binary cells),
Brainfuck++ (adds more features like networking), Pi (encodes Brainfuck program in error agains pi digits),
Unary (encodes Brainfuck with a single symbol) etcetc.

In LRS programs brainfuck may be seriously used as a super simple scripting language.

Brainfuck can be trivially translated to comun like this: remove all comments from brainfuck program, then

replace+, -,>,<,.,,,[and] with ++, --, $>0, $<0, ->' , $<0 <- , @' and . , respectively, and prepend
$>0 .
Specification

The "vanilla" brainfuck operates as follows:

We have a linear memory of cells and a data pointer which initially points to the Oth cell. The size and
count of the cells is implementation-defined, but usually a cell is 8 bits wide and there is at least 30000 cells.

A program consists of these possible commands:

¢ +: increment the data cell under data pointer

e -: decrement the data cell under data pointer

¢ >: move the data pointer to the right

e <: move the data pointer to the left

¢ [: jump after corresponding] if value under data pointer is zero

¢]: jump after corresponding [if value under data pointer is not zero
¢ .: output value under data pointer as an ASCIlI character

¢ ,: read value and store it to the cell under data pointer

Characters in the source code that don't correspond to any command are normally ignored, so they can
conveniently be used for comments.

Brainfuck source code files usually have .bf or .b extension.

Implementation

This is a very simple C implementation of brainfuck:

#include <stdio.h>

#define CELLS 30000

const char program[] = ",[.-1"; // your program here

int main(void)

{
char tape[CELLS];

Brainfuck LRS Wiki 102/895

unsigned int cell = 0;
const char *i = program;
int bDir, bCount;

while (*i != 0)

{

Sw

{

itch

case
case
case
case
case
case
case
case

if

wh

{

}
br

(*1)
'>': cell++; break;
'<': cell--; break;
'+': tape[cell]++; break;
'-': tapelcell]l--; break;
".': putchar(tape[cell]); fflush(stdout); break;
',': scanf("%sc",tape + cell); break;
|[|.
I]I:
((tape[cell] == 0) == (*i == ']"))
break;
ir=(*i="") 21: -1;
ount = 0;
ile (1)
if (*i="[")
bCount += bDir;
else if (*i == ']")

bCount -= bDir;

if (bCount == 0)
break;

i += bDir;

eak;

default: break;

}

i++;

TODO: comun implementation

Programs

Here are some simple programs in brainfuck.

Print HI:

T

Read two 0-9 numbers (as ASCII digits) and add them:

,>, [<+>-]<

TODO: more

Variants

TODO

Brainfuck

LRS Wiki

P

103/895

See Also

False (a very similar esolang)
comun

j

brain_software

Brain Software

Brain software, also brainware, is kind of a fun idea of software that runs on the human brain as opposed to a
typical electronic computer. This removes the dependency on computers and highly increases freedom. Of
course, this also comes with a huge drop of computational power :) However, aside from being an
entertaining idea to explore, this kind of software and "architectures" may become interesting from the
perspective of freedom and primitivism (especially when the technological collapse seems like a real
danger).

Primitive tools helping the brain compute, such as pen and paper or printed out mathematical tables, may be
allowed.

Example of brain software can be the game of chess. A chess master can easily play the game without a
physical chess board, only in his head, and he can play games with someone else just by saying the moves
out loud. He may even just play games with himself, which makes chess a deep, entertaining game that can
be 100% contained in one's brain. Such game can never be taken away from the man, it can't be altered by
corporations, it can't become unplayable on new hardware etc., making it free to the greatest extent. Many
other board games and pen and pencil games, such as racetrack (pen and pencil racing game suitable for
one or many players).

One may think of a pen and paper computer with its own simple instruction set that allows general purpose
programming. This instruction set may be designed to be well interpretable by human and it may be
accompanied by tables printed out on paper for quick lookup of operation results -- e.g. a 4 bit computer
might provide a 16x16 table with precomputed multiplication results which would help the individual execute
the multiplication instruction within mere seconds.

Yet another idea is to make a computer with architecture similar to the typical electronic computers but
powered by human brains -- let's call this a human computer (not to be confused with people whose job was
to perform computations!). Imagine that after a societal collapse we lose our computer technology (i.e. the
ability to manufacture transistors and similar key components), but we retain our knowledge of computer
architecture, algorithms and the usefulness of computers. As a temporary solution for performing
computations we may create a "computer made of humans", a room with several men, each one performing
a role of some computer component, for example an ALU, cache and memory controller. Again, a special
instruction set and a set of tools (such as physical lookup tables for results of instructions) could be made to
make such a human computer relatively fast. It might not run Doom, but it could possibly e.g. compute some
mathematical constants to a high precision or perhaps help find optimal structure of cities, compute stresses
in big building etc. In such conditions even a slow calculator could be immensely useful.

bs

BS

Bullshit.

build_engine

Build Engine

For now see Duke Nukem.

Build Engine LRS Wiki 104/895

bullshit

Bullshit

Bullshit (BS) is nonsense, arbitrary unnecessary shit and/or something made up only out of necessity. Typical
example are e.qg. so called bullshit jobs -- jobs that are arbitrarily created just to keep people employed and
don't actually serve anything else.

Simplified example of capitalist bullshit: under capitalism basically the whole society is based on
bullshit of many kinds, small and big, creating many bullshit clusters that are all intertwined and interact in
complex ways, creating one huge bullshit. For simplicity let's consider an educational isolated bullshit cluster
(that we won't see that often in reality), a hypothetical car factory. No matter how the factory came to be, it
now ended up making cars for people so that these people can drive to work at the car factory to make more
cars for other people who will work to the car factory to make cars etc. -- a bullshit cycle that exists just for
its own sake, just wastes natural resources and lives of people. Of course at one point all the factory
employees will own a car and the factory will have no more demand for the cars, which threatens its
existence. Here capitalism employs adding more bullshit: let's say they create new bullshit jobs they call
something like "smart car research center" -- this will create new work position, i.e. more people who will
need cars to drive to work, but MAINLY the job of these people will be adding artificial obsolescence to the
cars, which will make them last much shorter time and regularly break so that they will need repairs using
parts manufactured at the factory, creating more work that will need to be done and more bullshit jobs in the
car repair department. Furthermore the team will make the cars completely dependent on subscription
software, employing consumerism, i.e. the car will no longer be a "buy once" thing but rather something one
has to keep feeding constantly (fuel, software subscription, insurance, repairs, cleaning, tire changes, and of
course once in a few years just buying a new non-obsolete model), so that workers will still need to drive to
work every day, perpetuating their need for being preoccupied with owning and maintaining a car. This is a
bullshit cluster society could just get rid of without any cost, on the contrary it would gain many free people
who could do actually useful things like curing diseases, eliminating world hunger, creating art for others to
enjoy. However if you tell a capitalist any part of this system is bullshit, he will defend it by its necessity in
the system as a whole ("How will people get to work without cars?!", "Factories are needed for the
economy!", "Economy is needed to drive manufacturing of cars!") -- in reality the bullshit clusterfuck spans
the whole world to incredibly deep levels so you just can't make many people see it, especially when they're
preoccupied with maintaining their own existence and just get by within it.

Some things that are bullshit include:

e anticheat

e antiviruses
earmy

e bureaucracy
e capitalism

e censorship
¢ clothes

e consumerism

e countries

e crypto

e disclaimers

* DRM

e economy

e management

e fashion

e "game design" (it's just part of programming games)
e gender studies

e guns

e insurance

* jobs

* law

e licenses

¢ "life coaching" Imao

Bullshit LRS Wiki 105/895

e market

e marketing, ads

e money

e police

e political correctness

e prisons

e privacy

e productivity

e property (including copyright etc.)

e wars
¢ Anything justified by "economy needing it" is 100% pure bullshit.

OK then, what's not bullshit? Well, things that matter, for example food, health, education, love, fun, art,
technology, knowledge about the world, science, morality, exploration, ...

bytebeat

Bytebeat

Bytebeat is a procedural chiptune/8bit style music generated by a short expression in a programming
language; it was discovered/highlighted in 2011 by Viznut (author of countercomplex blog) and others, and
the technique capable of producing quite impressive music by single-line code has since caught the attention
of many programmers, especially in demoscene. There has even been a paper written about bytebeat.
Bytebeat can produce music similar (though a lot simpler) to that created e.g. with music trackers but with a
lot less complexity and effort.

This is a beautiful hack for LRS/suckless programmers because it takes quite a tiny amount of code, space
and effort to produce nice music, e.g. for games (done e.g. by Anarch).

8bit samples corresponding to unsigned char are typically used with bytebeat. The formulas take
advantage of overflows that create rhythmical patterns with potential other operations such as
multiplication, division, addition, squaring, bitwise/logical operators and conditions adding more interesting
effects.

Bytebeat also looks kind of cool when rendered as an image (outputting pixels instead of audio samples).

How To

Quick experiments with bytebeat can be performed with online tools that are easy to find on the web, these

usually use JavaScript.

Nevertheless, traditionally we use C for bytebeat. We simply create a loop with a time variable (i) and inside
the loop body we create our bytebeat expression with the variable to compute a char that we output.

A simple "workflow" for bytebeat "development" can be set up as follows. Firstly write a C program:

#include <stdio.h>
int main(void)
for (int 1 = 0; i < 10000; ++i)
putchar(

i / 3 // < bytebeat formula here
);

Bytebeat LRS Wiki 106/895

return 0;

}
Now compile the program and play its output e.qg. like this:

gcc program.c && ./a.out | aplay

Now we can just start experimenting and invent new music by fiddling with the formula indicated by the
comment.

General tips/tricks and observations are these:

¢ Qutputting the variable i creates a periodical saw-shaped beat, multiplication/division
decreases/increases the speed, addition/subtraction shifts the phase backward/forward.

e Squaring (and other powers) create a wah-wah effect.

¢ Crazier patterns can be achieved by using the variable in places of numerical constants, e.g. i
<< ((1 / 512) % 8) (shifting by a value that depends on the variable).

¢ Modulo (%) increases the frequency and decreases volume (limits the wave peak).

¢ So called Sierpinski harmonies are often used melodic expressions of the form i*N & i >> M.

¢ Bitwise and (&) can add distortion (create steps in the wave).

¢ A macro structure of the song (silent/louds parts, verse/chorus, ...) can be achieved by combining
multiple patterns with some low-frequency pattern, e.qg. this alternates a slower and faster beat: int
cond = (i & Ox8000) == 0;,cond * (i / 16) + !cond * (i / 32)

¢ Extra variables can add more complexity (e.g. precompute some variable a which will subsequently
be used multiple times in the final formula).

Copyright

It is not exactly clear whether, how and to what extent copyright can apply to bytebeat: on one hand we
have a short formula that's uncopyrightable (just like mathematical formulas), on the other hand we have
music, an artistic expression. Many authors of bytebeat "release" their creations under free licenses such as
CC-BY-SA, but such licenses are of course not applicable if copyright can't even arise.

We believe copyright doesn't and SHOULDN'T apply to bytebeat. To ensure this, it is good to stick CCO to any
released bytebeat just in case.

Examples
A super-simple example can be just a simple:
ei / 16

The following more complex examples come from the LRS game Anarch (these are legally safe even in case
copyright can apply to bytebeat as Anarch is released under CCO):

e distortion guitar rhythmical beat: ~((((1 >> ((1i >> 2) % 32)) | (1 >> ((1 >> 5) % 32))) &
0x12) << 1) | (i >> 11)

e electronic/techno: ((0x47 >> ((1 >> 9) % 32)) & (i >> (1 % 32))) | (0X57 >> ((1 >> 7) %
32)) | (0x06 >> ((i >> ((((1i * 11) >> 14) & Ox0e) % 32)) % 32))

e main theme, uses an extra variable: (((i) & 65536) ? (a & (((i * 2) >> 16) & 0x09)) : ~a),
whereuint32 t a = ((1 > 7) | (1 >>9) | (-1 <<1) | i)

Here is an ASCII visualization of the first track:

AN NN RN

MIIIIIIIIIIIIIIIMIIIIIIIIIIIIIIIkIMIIIIIIIIIIIIIkIMIIIIIIIIIIIII
C 5 XXXXXXXXXXXXXXC ; CXXXXXXXXXXXXX, § XXXXXXXXXXXXXX , j CXXXXXXX XXX XXX

scrrrrrrrrroroa: "'lIIII'IIIIO' -111111111110 srrrrrrrrroay

okokokkkkkkkkkkklklkokkkkkkkkkkkokokokkkkkkkkkkklklkokkkkkkkkkkk
xkX0000000000000ckX0000000000000xkXKOOOOOO000000ckXKOOOOOOOOO000
oMKMKMMMMMMMMMMM LMkMKMMMMMMMMMMMoMKMKMMMMMMMMMMM TMKMKMMMMMMMMMMM

Bytebeat LRS Wiki 107/895

XK O OKWWWWWWWWWWW c KX O KWWWWWWWWWWW X K O KKWWWWWWWWWWW c KXKKWWWWWWWWWWW
XMWMWMWWWWWWWWWWXMWMWMWWWWWWWWWW X O WO WMWWWWIWWWWWW X O WOWMWWWWWWWWWW
XMWMWMWWWWWWWWWWXMWMWMWWWWWWWWIWW X O WO WMWWWWWWWWWW X O WOWMWWWWWWWWWW
XMMMMMWWWWWWWWWWXMMMMMWWWWWWWWWW X ©OMOMMWWWWWWWWWW X OMOMMWWWWWWWWWW
XMMMMMWWWWWWWWWWXMMMMMWWWWWWWWWW X OMOMMWWWWWWWWWW X OMOMMWWWWWWWWWW
XMW cWWWWWWWWWWWWx TWc WWWWWWWWWWWWXMW cWWWWWWWWWWWWx TWc WWWWWWWWWWWW
xMc cWwWWWWWWWWWWWx T c cWwWWWWWWWWWWWxMc cWWWWWWWWWWWWx T c cWwWwWiWWwWWiWWwww
XMW cWiWWWWWWWWWWWX TW ¢ WWWWWWWWWWWW XMW c WWWWWWWWWWWWX TW c WWWWWWWWWwWw
XMc cWWWWWWWWWWWWx 1 c cWWWWWWWWWWWWxMc cWwWWWWWWWWWWx 1 c c WWwWWWWwWwWWwWww
XMWWWWWWWWWWWWWW X MWWWWWWWWWIWWWWW X MXWWWWIWWWWWWWWW X MXWWWWWWWWWWWWW
XMWWWWWWWWWWWWWW X MWWWWWWWWWWWWIWW X MXWWWIWWWWIWWWWIWWXMXWWWWWWWWWWWWW
XMWXWWWWWWWWWWWW X MWXWWWWWWWWWWIWW X MXXWWWWWWIWWWWIWWXMX X WWWWWWWWWWWW
XMWXWWWWWWWWWWWW X MWXWWWWWWWIWWWWW X MXXWWWIWWWWWWWWW X MXXWWWWWWWWWWWW
XMWWO OWWWWWWWWWWXMOWO OWWWWWWWWWWXMWWO O WWWWIWWWWWWXMOWO O WWWWWWWWWW
XMWO O OWWWWWWWWWWXMO 0 0 OWWWWWWWWWWXMWO 0 OWWWWWWWWWWXMO 0 0 O WWWWWWWWWW
XMWWO OWWWWWWWWWWXMOWO OWWWWWWWWWWXMWWO O WWWWWWWWWWXMOWO OWWWWWWWWWW
XMWO O OWWWWWWWWWWXMO 0 0 OWWWWWWWWWWWWWO 0 OWWWWWWWWWWWWO 0 0 O WWWWWWWWWW
XXKKMMWWWWWWWWWWWWWWWMWWWWWWWWWWWWWMWMWWWWIWWWWWWWWWMWMWWWWWWWWWW
XX KKMMWWWWWWWWWWWWWWWMWWWWWWWWWWWWWMWMWWWWWWWWWWWWWMWMWWWWWWWWWW
XXKKMMWWWWWWWWWWWWWWMMWWWWWWWWWWWWWMMMWWWWWWWWWWWWWMMMWWWWWWWWWW
XXKKMMWWWWWWWWWWWWWWMMWWWWWWWWWWWWWMMMWWWWWWWWWWWWWMMMWWWWWWWWWW
X X KKMMWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWIWWWWWWWWWWWWWWWWWWWWWWWWW
XX KKMMWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWIWWWWIWWWWIWWWWIWWWWIWWWWWWWWWW
XX KKMMWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWIWWWWIWWWWIWWWWWWWWWWWWWW
X X KKMMWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWIWWWWWWWWWWWWWWWWWWWWWWWWW

NN N NN RN
MMIIIIlIIIIIIIIIIlII

CCCCXXXXXXXXXXXXXXXXXXX XXX XXX XXX XXX XXX XXXXX XXX XXX XXX XXX XXX XXXXXX
ooookk
XXKKKKOO00
ookkMM
XXKKMMWWIWWWWWIWWW
XX KKMMWWWWWWWWWWWWWwWWwWwWwWWWWWWWwWwWWwWWWwWwWWwWWwWwWWWWWwWwwwwWwWwWwWwwwwwwwwv
XXKKMMWWWWWWWWWWWwWWWWWwWWWwWwwWwWwWwWWWwwWwWwwwwWwWwWwwwwwwwwwWwWwWwWwwwwwwwww
XXKKMMWWIWWWWWIWWW
XX KKMMWWWWWWWWWWWWWwWWwWwWwWWWWWWWwWwWWwWWWwWwWWwWWwWwWWWWWwWwwwwWwWwWwWwwwwwwwwv
XXKKMMWWWWWWWWWWwWwWWWWWWwWwWwwWwWwWwWWwWwwwWwwwwwWwWwwwwwwwwwWwWwWwWwwwwwwwww
XXKKMMWWIWWWWWIWWW
XX KKMMWWWWWWWWWWWWWwWWwWwWWWWWWWwWwWwWwWWWWWwWWWWWWWWWWWwWwWwWwWwWwWwWwwwwwwwwv
WwwwWWWwWWwWWWWWWWWWWWWWwWW
XXXXXXXXKKKKKKKKMMMMMMMMWW
WwwWwWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWIWWWWWWWWWWWWWWWWWWWWWWWW
WwwwwWWWWWwWWWWWWWWWWWWwWwWwWwWW
WWWwWWWWWwWWWWWWWWWWWWWWWWWWWWWWWWWWWWIWWWWWWWWWWWWWWWWWWWWWWWWWWWW
XXX XXX XX KKKKKKKKMMMMMMMMWWWWWWWWWWWWWWWWWWWWWWWWwWwWwWwWwWwWwWwWwwwwwwwv
WwwwwWWWWWwWWWWWWWWWWWWwWwWwWwWW
WWWwWWWWWwWWWWWWWWWWWWWWWWWWWWWWWWWWWWIWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WwwWwWWW
XXXXXXXXKKKKKKKKMMMMMMMMWW
WWWwWWWWWwWWWWWWWWWWWWWWWWWWWWWWWWWWWWIWWWWWWWWWWWWWWWWWWWWWWWWWWWW
WwwWwWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWIWWWWWWWWWWWWWWWWWWWWWWWW
WwwWwwWWWwWWwWWWWWWWWWWWWWwWW
XXXXXXXXKKKKKKKKMMMMMMMMWW
WwwWwWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWIWWWWWWWWWWWWWWWWWWWWWWWW
WiwwWwwWWWwWWwWWWWWWWWWWWWWwWWwWW
WWWwWWWWWwWWWWWWWWWWWWWWWWWWWWWWWWWWWWIWWWWWWWWWWWWWWWWWWWWWWWWWWWW

See Also

e music tracker

e databending

e MIDI

* beatbox

e animalese / beep speech

bytecode

Bytebeat LRS Wiki 108/895

Bytecode

Bytecode (BC, also P-code, "portable code") is a type of binary format for executable programs usually
intended to be interpreted or to serve as an intermediate representation in compilers (i.e. meant to be
translated to some other language); it is quite similar to machine code, however machine code is meant to
be directly run by some physical hardware while bytecode is more of a virtual, machine independent code
preferring things like portability, speed of interpretation, retaining meta information or being easy to
translate.

TODO: moar

Example

Let's consider a simple algorithm that tests the Collatz conjecture (which says that applying a simple
operation from any starting number over and over will always lead to number 1). The program reads a
number (one digit for simplicity) and then prints the sequence until reaching the final number 1. The
algorithm in C would look as follows:

// Collatz conjecture
#include <stdio.h>

int next(int n)

{
return n % 2 ? // is odd?
3*n+1:
n/2;
}

int main(void)
{
int n = getchar() - '0'; // read input ASCII digit

while (1)
{
printf("%d\n",n);
if (n == 1)
break;

n = next(n);

}

return 0;

}

C will be normally compiled to machine code, however we can take a look at some immediate representation
bytecode that compilers internally use to generate the machine code. The following is LLVM, a widely used
bytecode that can be produced from the above C code with clang compiler (e.g. as clang -ccl tmp.c -S
-emit-1lvm -0 -):

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-5128"
target triple = "x86 64-pc-linux-gnu"

@.str = private unnamed addr constant [4 x i8] c"%d\0A\00", align 1

; Function Attrs: noinline nounwind optnone
define 132 @next(i32 %n) #0 {
entry:
%n.addr = alloca i32, align 4
store i32 %n, 1i32* %n.addr, align 4
%0 = load 132, i32* %n.addr, align 4
srem = srem 132 %0, 2
%tobool = icmp ne i32 %rem, 0
br il %tobool, label %cond.true, label %cond.false

cond.true: ; preds = S%entry

Bytecode LRS Wiki 109/895

1
mul nsw i32 3, %1
add nsw i32 %mul, 1

abel %cond.end

load 132, i32* %n.addr, align 4
mul =
add =

1
d
rl

T o° of o°

cond. false: ; preds = %entry
%2 = load 132, 1i32* %n.addr, align 4
%div = sdiv 132 %2, 2
br label %cond.end

cond.end: ; preds = %cond.false, %cond.true
%scond = phi 132 [%add, %cond.true], %div, %cond.false]
ret 132 %cond

}

; Function Attrs: noinline nounwind optnone
define 132 @main() #0 {
entry:

%sretval = alloca i32, align 4

%sn = alloca 132, align 4

store i32 0, 1i32* %retval, align 4

%scall = call 132 (...) @getchar()

%sub = sub nsw i32 %call, 48

store i32 %sub, i32* %n, align 4

br label %while.body

while.body: ; preds = %entry, %if.end
%0 = load i32, i32* %n, align 4
%calll = call 132 (i8*, ...) @printf(i8* ...)
%1 = load 132, 1i32* %n, align 4
scmp = icmp eq 132 %1, 1
br i1 %cmp, label %if.then, label %if.end

if.then: ; preds = %while.body
br label %while.end

if.end: ; preds = %while.body
%2 = load 132, i32* %n, align 4
%call2 = call 132 @next(i32 %2)
store i32 %call2, i32* %n, align 4
br label S%while.body

while.end: ; preds = %if.then
ret i32 0
}

declare 132 @getchar(...) #1

declare i32 @printf(i8*, ...) #1
attributes #0 = { ... }
attributes #1 = { ... }

1Tlvm.module.flags = !{!0}
Tlvm.ident = !{!1}

10
11

1{i32 1, !"wchar_size", 132 4}
{!"clang version 7.0.1-8+deblOu2 (tags/RELEASE 701/final)"}

TODO: analyze the above

Now let's rewrite the same algorithm in comun, a different language which will allow us to produce another
kind of bytecode (obtained with comun -T program.cmn):

Collatz conjecture

next:
$0 2 % ? # is odd?
3 %1 +

2/

Bytecode LRS Wiki 110/895

<-

||0|| _

@@

read input ASCII digit
convert it to number

print:
$0 10 / "O0" + ->
$0 10 % "0" + ->
10 ->

Here is annotated comun bytecode this compiles to:

000000:
000001:
000002:
000003:
000004:
000005:
000006:
000007:
000008:
000009:
00000a:
00000b:
00000c:
00000d:
00000e:
00000f:
000010:
000011:
000012:
000013:
000014:
000015:
000016:
000017:
000018:
000019:
00001a:
00001b:
00001c:
00001d:
00001e:
00001f:
000020:
000021:
000022:
000023:
000024 :
000025:
000026:
000027:
000028:
000029:
00002a:
00002b:
00002c:
00002d:
00002e:
00002f:
000030:
000031:
000032:

Bytecode

DES
JMA
cocC
MGE
CON
MOX
DES
JNA
cocC
CON
MUX
CON
ADX
DES
JMA
cocC
CON
DIX
DES
RET
INI
INP
CON
cocC
SUX
DES
MGE
CON
DIX
CON
cocC
ADX
ouT
MGE
CON
MOX
CON
coc
ADX
ouT
CON
ouT
MGE
CON
EQX
DES
JNA
cocC
DES
JMA
cocC

0111

0100...

0001
0000
0010
0000
0001

0000. ..

0001
0011
0000
0001
0000
0010

0011...

0001
0010
0000
0011
0000
0000
0000

0000. ..

0011
0000
0100
0000
1010
0000

0000. ..

0011
0000
0000
0000
1010
0000

0000. ..

0011
0000
0000
1010
0000
0000
0001
0000
0001

0100...

0011
0101

1000. ..

0011

func
20 (#14)
2 (#2)

if
16 (#10)

3 (#3)
1 (#1)

else
19 (#13)

2 (#2)

end if

48 (#30)

loop
10 (#a)

48 (#30)

10 (#a)

48 (#30)

10 (#a)

1 (#1)
if
52 (#34)

break
56 (#38)

+ = xW

LRS Wiki

111/895

000033:
000034:
000035:
000036:
000037:
000038:

DES
CAL
DES
JMA
coc
END

00 0011 # end if
00 0011 # 3 (#3)
00 0110 # end loop / .

00 1010... # 26 (#1la)

00 0001
00 0000

| /.
| next

TODO: analyze the above, show other bytecodes (python, java, ...)

Let's try the same in Python. The code we'll examine will look like this:

Collatz conjecture

def next(n):
return 3 * n + 1 if n %2 !=0elsen/ 2

n = ord(raw_input()[0]) - ord('0")

while True:
print(n)

if n ==
break

n =

And the bytecode we get (e.g. with python -m dis program.py):

3

>>

11

12

14 >>

>>
>>

o wo

next(n)

LOAD_CONST
MAKE_FUNCTION
STORE_NAME

LOAD NAME
LOAD_NAME
CALL_FUNCTION
LOAD_CONST
BINARY SUBSCR
CALL_FUNCTION
LOAD_NAME
LOAD_CONST
CALL_FUNCTION
BINARY SUBTRACT
STORE_NAME

SETUP_LOOP
LOAD_NAME
POP_JUMP_IF FALSE

LOAD NAME
PRINT_ITEM
PRINT NEWLINE

LOAD_NAME
LOAD_CONST
COMPARE_OP
POP_JUMP_IF FALSE

BREAK_LOOP
JUMP_FORWARD

LOAD_NAME
LOAD_NAME
CALL_FUNCTION
STORE_NAME
JUMP_ABSOLUTE
POP_BLOCK
LOAD_CONST
RETURN_VALUE

HONRK [oNoNo)

HNRE R

w

43

83

(o] ONWW

R WwREWo

TODO: make sense of it and analyze it

Bytecode

(<code object next at ..

(next)

(ord)
(raw_input)

(n)

(to 84)
(True)

(to 68)

(next)

(n)

(None)

LRS Wiki

2)

112/895

TODO: web assembly

byte

Byte

Byte (symbol: B) is a basic unit of information, nowadays already practically always consisting of 8 bits (for
which it's also called an octet), that allow it to store 278 = 256 distinct values (for example a number in
range 0 to 255). It is commonly the smallest unit of computer memory a CPU is able to operate on; memory
addresses are assigned by steps of one byte. We use bytes to measure the size of memory and derive higher
memory units such as a kilobyte (kB, 1000 bytes), kibibyte (KiB, 1024 bytes), megabyte (MB, 10" 6 bytes)
and so forth. In conventional programming a one byte variable is seen as very small and used if we are really
limited by memory constraints (e.g. embedded) or to mimic older 8bit computers ("retro games" etc.): one
byte can be used to store very small numbers (while in mainstream processors numbers nowadays mostly
have 4 or 8 bytes), text characters (ASCII, ...), very primitive colors (see RGB332, palettes, ...) etc.

Historically byte was used to stand for the basic addressable unit of memory capable of storing one text
character or another "basic value" and could therefore have a different size than 8 bits: for example ASCII
machines might have had a 7bit byte, 16bit machines a 16bit byte etc.; in C (standard 99) char is the "byte"
data type, its byte size is always 1 (sizeof(char) == 1), though its number of bits (CHAR BIT) can be
greater or equal to 8; if you need an exact 8bit byte use types such as int8 t and uint8 t from the
standard stdint library. From now on we will implicitly talk about 8bit bytes.

Value of one byte can be written exactly with two hexadecimal digits with each digit always
corresponding to higher/lower 4 bits, making mental conversions very easy; this is very convenient
compared to decimal representation, so programmers prefer to write byte values in hexadecimal. For
example a byte whose binary value is 11010010 is D2 in hexadecimal (1101 is always D and 0010 is always
2), while in decimal we get 210.

Byte frequency/probability: it may be interesting and/or useful (e.g. for compression) to know how often
different byte values appear in the data we process with computers -- indeed, this always DEPENDS; if we are
working with plain ASCII text, we will never encounter values above 127, and on the other hand if we are
processing photos from a polar expedition, we will likely mostly encounter byte values of 255 (as snow will
cause most pixels to be completely white). In general we may expect values such as 0, 255, 1 and 2 to be
most frequent, as many times these are e.g. assigned special meanings in data encodings, they may be
cutoff values etc. Here is a table of measured byte frequencies in real data:

{ Measured by me. ~drummyfish }

type of data least c. 2nd least c. 3rd least c. 3rd most c. 2nd most c. most c.
GNU/Linux x86 executable 0x9e (0%) Oxb2 (0%) 0x9a (0%) 0x48 (2%) Oxff (3%) 0x00 (32%)

bare metal ARM Oxcf (0%) Oxb7 (0%) Oxa7 (0%) Oxff(2%) OxO1 (3%) Ox00 (15%)

executable
UTF8 English txt book 0x00 (0%) 0x01 (0%) 0x02 (0%) 0x74 (t, 6%) 0x65 (e, 8%) 0x20 (, 14%)
C source code 0x00 (0%) 0x01 (0%) 0x02 (0%) 0x31 (1, 6%) 0x20 (, 12%) 0x2c (,, 16%)

raw 24bit RGB photo image 0x07 (0%) 0x09 (0%) 0x08 (0%) 0xdd (0%) 0x00 (1%) Oxff (25%)

cache

Cache

Cache is a very small but fast computer memory that helps make communication between computer
components much more efficient (typically by making it much faster or taking less bandwidth) by
remembering recent requests and answers so that they don't have to be expensively repeated. The concept
of cache memory is extremely important and one of the very basics for designing and gptimizing hardware
and software (as cache may be implemented both in hardware and software). A cache may also help prevent
expensively recomputing results of functions in the same way, by remembering the recent results of the

Cache LRS Wiki 113/895

function (we may see this as a more abstract CPU-function communication). Though caches find wide use
almost everywhere, without further specifying the context or type of cache the word cache most often refers
to the CPU cache -- cache memory found in a CPU (nowadays in all PC CPUs, however still NOT in all
embedded CPUs), which is typically further subdivided into multiple levels (L1, L2 etc.) -- here we will be
using the term cache the same way, but keep in mind the principles apply everywhere and caches really are
used in many places. Cache is not to be confused with a buffer (which also helps optimize communication
but rather by means of creating bigger chunks to be transferred at once).

Basic principle: cache can be seen as a black box, "man in the middle" component that's placed in the line
of communication between a CPU and main memory (RAM). (Physically it is nowadays part of the CPU itself,
but we may imagine it as a separate component just sitting "on the wire" between CPU and RAM.) When
reading from memory, we have a pretty simple situation -- once CPU requests something from the memory,
the request first goes to the cache; if the cache has the result stored, it just quickly returns it -- we call this a
cache hit (this is good, we saved time!). A cache miss happens when the cache doesn't have the result
stored -- in such case the cache has to expensively forward the request to the memory and retrieve the data;
usually the cache retrieves a whole smaller block of memory because it can be expected the CPU will access
something in nearby memory in the near future (see the principle of locality below). When writing data to
memory the situation is a bit more complex as the cache may choose different strategies of behavior: for
simplicity it may just write the data through every time, but a more efficient (and also more complicated)
approach is to just store the data for itself and write it to the main memory only when necessary (e.g. when
it needs to load a different block of memory). Here we get into things such as cache coherence etc., which
may cause pretty nasty bugs and headaches.

Programmers often try to optimize their programs by making them "cache friendly", i.e. they try to minimize
long jumps in memory which causes a lot of cache misses and slows down the program. A typical example is
e.g. storing image data in the order by which it will be written to the screen.

A cache is related and/or exploits some observations and concepts related to computers such as:

¢ principle of locality: Computers (/CPUs) tend to more often than not access data that are close to
each other in memory, i.e. a CPU doesn't typically make random jumps in memory but rather e.g.
reads a sequence of bytes one after another from an array or struct. For this reason when a CPU pulls
something out of memory, there is a high probability of accessing an address that is nearby to this
memory next time -- a cache helps us get ready for this by prefetching this nearby data and having it
ready for very fast access.

e memory hierarchy: Mostly because of the principle of locality computer memory is divided into
different levels, a chain of memories that get progressively further away from the CPU, increasing
their size (decreasing price for capacity) as they get further away but also decreasing their speed.
Here a cache can be seen as the closest memory to the CPU (except for the reqgisters), i.e. being the
smallest, most expensive but also fastest memory. By extension we can see that RAM can in many
cases be seen as a "cache" for the hard drive, hard drive can be seen as "cache" for the network
(after all web browsers ARE caching websites into files on the disk) etc.

e dynamic programming: Dynamic programming is a programming technique revolving around
remembering already calculated results so that we don't have to compute them again in the future --
this is basically what caches do, they remember results we obtained in relatively expensive way so
that next time we can get them cheaper.

| _____ | nmwmwonnn I _____ I | ______ | I __________ I
small big huge gigantic
fast slowish super slow extremely slow

Cache resides very close to the CPU within the memory hierarchy.

TODO: code

cancer

Cache LRS Wiki 114/895

Cancer

Cancer is similar to shit but is even worse because it spreads itself and infects anything else it touches (it is a
subset of shit).

Examples of cancer are:

e human civilization

e capitalism and many of its parts like consumerism, corporations, marketing, industrialization etc.
» pseudoleftist movements like LGBT or Feminism

e the mainstream

e fashion

e soynet, soytech

e political correctness
¢ nationalism, fascism, militarism, ...

e revolutions

o fight culture

e hero culture

e politics

¢ "personal pronouns"
e biological cancer

See Also

* shit

capitalism

$$$Capitalism$$$

Capitalism is how you enslave a man with his approval.

Capitali$m is the worst socioeconomic system we've yet seen in history,”source based on pure greed,
culture of slavery and artificially sustained conflict between everyone in society (so called competition),
abandoning all morals and putting money and profit (so called capital) above everything else including
preservation of life itself, capitalism fuels the worst in people and forces them to compete mand suffer for
basic resources, even in a world where abundance of resources is already possible to achieve -- of course,
capitalism is a purely rightist idea. Capitalism goes against progress (see e.g. antivirus paradox), good
technology and freedom, it supports immense waste of resources, wars, abuse of people and animals,
destruction of environment, decline of morals, deterioration of art, invention of bullshit (bullshit jobs, bullshit
laws, ...), utilizing and perfecting methods of torture, brainwashing, censorship and so on. In a sense
capitalism can be seen as slavery 2.0 or universal slavery, a more sophisticated form of slavery, one which
denies the label by calling itself the polar opposite, "freedom", when in fact capitalism is merely a "freedom"
to oppress others -- underlying every argument for capitalism is an argument against freedom itself;
capitalism manipulates people into them approving and voluntarily partaking in their own enslavement
(capitalist slaves are called wage slaves or wagies) -- this new form of slavery which enslaves everyone
evolved because the old form with strictly separated classes of slaves and masters was becoming
unsustainable, with the enslaved majority revolting, causing civil wars etc. This alone already seems to many
like a good reason for suicide, however wage and consumption slavery is still only a small part of capitalist
dystopia -- capitalism brings on destruction basically to every part of civilization. It it also often likened to a
cancer of society; one that is ever expanding, destroying everything with commercialism, materialism, waste
and destruction, growing uncontrollably with the sole goal of just never stop an ever accelerating growth.
Nevertheless, it's been truthfully stated that "it is now easier to imagine the end of all life than any
substantial change in capitalism." Another famous quote is that "capitalism is the belief that the worst of
men driven by the nastiest motives will somehow work for the benefit of everyone", which describes its
principle quite well.

$$$Capitalism$$$ LRS Wiki 115/895

{ Some web bashing capitalism | just found: http://digdeeper.club/articles/capitalismcancer.xhtml, read only
briefly, seems to contain some nice gems capturing the rape of people. ~drummyfish }

Capitalism is fundamentally flawed and CANNOT be fixed -- capitalists build on the idea that
competition will drive society, that market will be self sustaining, however capitalism itself works for instating
the rule of the winners who eliminate their competition, capitalism is self destabilizing, i.e. the driving force
of capitalism is completely unsustainable and leads to catastrophic results as those who get ahead in
working competition are also in advantage -- as it's said: money makes money, therefore money flow from
the poor to the rich and create a huge imbalance in which competition has to be highly forced, eventually
completely arbitrarily and in very harmful ways (invention of bullshit jobs, creating artificial needs and hugely
complex state control and laws). It's as if we set up a race in which those who get ahead start to also go
faster, and those become the ones who oversee and start to create the rules of the race -- expecting a
sustained balance in such a race is just insanity. Society tries to "fight" this emerging imbalance with various
laws and rules of market, but this effort is like trying to fight math itself -- the system is mathematically
destined to be unstable, pretending we can win over laws of nature themselves is just pure madness.
Capitalism is practically equivalent to the terms free market and free trade -- today's extreme,
catastrophic form of capitalism is just sufficiently evolved free market, i.e. it is impossible to support free
market without supporting what we see today as long as you believe there will ever be any progress in
society; against beliefs of great many unintelligent individuals, it is for example impossible to be a true
anarchist as long as you believe in form of free market.

Capitalism produces the worst imaginable technology and rewards people for being cruel to each
other. It points the direction of society towards a collapse and may very likely be the great filter of
civilizations; in capitalism people de-facto own nothing and become wholly dependent on corporations which
exploit this fact to abuse them as much as possible. This is achieved by slowly boiling the frog and
leading the pig to the slaughterhouse. Capitalism further achieves enslavement of society while staying
accepted by deflecting responsibility from the big picture to insignificant details: it says "Look, this
politican fucked up your society! This one CEO of this corporation did it! This law here fucked your society!
This one immigrant minority is responsible for it! Social media is to blame!" while in fact all of these are just
symptomes of the underlying cancer of capitalism; it is relied on an average idiot's inability to see the big
picture (society made mostly of idiots is achieved by indoctrination, propaganda and brainwashing that
teaches one to only care about the immediate, himself and his daily food; big picture related concepts such
as ethics and morality are laughed at). No one owns anything, products become services (your car won't
drive without Internet connection and permission from its manufacturer), all independence and
decentralization is lost in favor of a highly fragile and interdependent economy and infrastructure of services,
each one controlled by the monopoly corporation. Then only a slight break in the chain is enough to bring the
whole civilization down in a spectacular domino effect.

The underlying issue of capitalism is competition and conflict -- competition is the root of all evil in any
social system, however capitalism is the absolute glorification of competition, amplification of this evil to
maximum. It is implemented by setting and supporting a very stupid idea that everyone's primary and
only goal is to be self-benefit, i.e. maximization of capital. This is combined with the fact that the
environment of free market is a an evolutionary system which through natural selection extremely
effectively and quickly optimizes the organisms (corporations) for achieving this given goal, i.e. generating
maximum profit, on the detriment of all other values such as wellbeing of people, sustainability or morality.
In other words capitalism has never promised a good society, it literally only states that everyone should try
to benefit oneself as much as possible, i.e. defines the fitness function purely as the ability to seize as many
resources as possible, and then selects and rewards those who best implement this function, i.e. those we
would call sociopaths or "dicks", and to those is given the power in society. Yes, this is how nature works, but
it must NOT be how a technologically advanced civilization with unlimited power of destruction should work.
In other words we simply get what we set to achieve: find entities that are best at making profit at any cost.
The inevitable decline of society can not possibly be prevented by laws, any effort of trying to stop evolution
by inventing artificial rules on the go is a battle against nature itself and is extremely naive, the immense
power of the evolutionary system that's constantly at work to find ways to bypass or cancel laws in the way
of profit and abuse of others will prevails just as life will always find its way to survive and thrive even in the
worst conditions on Earth. Trying to stop corporations with laws is like trying to stop a train by throwing
sticks in its path. The problem is not that "people are dicks", it is that we choose to put in place a system that
rewards the dicks, a system that fuels the worst in people and smothers the best in them.

$$$Capitalism$$$ LRS Wiki 116/895

Even though nowadays quite a lot of time has passed since times of Marx and capitalism has evolved to a
stage with countless disastrous issues Marx couldn't even foresee, it is useful to mention one of the basic
and earliest issues identified by Marx, which is that economically capitalism is based on stealing the
surplus value, i.e. abuse of workers and consumers by owners of the means of production (factories, tools,
machines etc.) -- a capitalist basically takes money for doing nothing, just for letting workers use tools he
proclaims to own (a capitalist will proclaim to "own" land that he never even visited, machines he didn't
make as they were developed over centuries, nowadays he even claims to own information and ideas) -- as
Kropotkin put it: the working man cannot purchase with his wage the wealth he has produced. This allows a
capitalist oppressor to make exponentially more money for nothing and enables existence of monstrously
rich and powerful individuals in a world where millions are starving -- consider for example that nowadays
there are people who own hundreds of buildings and cars plus a handful of private planes and a few private
islands. It is not possible for any single human to work an equivalent of effort that's needed to produce what
such an individual owns, even if he worked 24 hours a day for his whole life, he wouldn't get even close to
matching the kind of effort that's needed to build the hundreds of buildings he owns -- any such great wealth
is always stolen from countless workers whose salary is less than what's adequate for their work and also
from consumers who pay more than it really costs to manufacture the goods they buy. Millions of people are
giving their money (resources) for free to someone who just proclaims to "own" tools and even natural
resources that have been there for billions of years. The difference in wealth and privileges this wealth
provides divides society into antagonist classes that are constantly at war -- traditionally these classes are
said to be the bourgeaisie (business owners, the upper class) and the proletariat (workers, the lower
class), though under modern capitalism the division of society is not so simple anymore -- there are more
classes (for example small businesses work for larger businesses) but they are still all at war.

Nowadays capitalism is NOT JUST an economic system anymore. Technically perhaps, however in reality
it takes over society to such a degree that it starts to redefine very basic social and moral values to the point
of taking the role of a religion, or better said a brainwashing cult in which people are since childhood taught
(e.g. by constant daily exposure to private media) to worship economy, brands, performance, and to engage
in cults of personalities (see myths about godlike entrepreneurs) and productivity (i.e. not usefulness,
morality, efficiency or similar values, just the pure ability to produce something for its own sake). Close
minded people will try to counter argue in shallow ways such as "but religion has to have some supernatural
entity called God" etc. Indeed, capitalism has its own Gods (money, the successful entrepreneurs,
corporations, brands, ...), fairy tales, myths and invisible entities (economy, the invisible hand, ...), rituals
(entrepreneurs in expensive suits giving stage speeches like preachers, people making sacrifices for the
economy, ...) and completely irrational beliefs (if you try hard enough you try hard enough you can achieve
anything! listen to this tape before sleep to unlock the secret power of your brain that leads to success!).
Indeed, if one tries to come up with a definition of religion that technically won't fit capitalism because he
doesn't want capitalism to be a religion, he can probably do it, but it has all attributes of a religion and if we
don't limit our views by arbitrary definitions of words, we see that the effects of capitalism on society are de
facto of the same or even greater scale than those of a religion, and they are certainly more negative.
Capitalism itself works towards suppressing traditional religions (showing it is really competing with them
and therefore aspiring for the same role) and their values and trying to replace them with worship of money,
success and self interest, it permeates society to the deepest levels by making every single area of society a
subject of business and acting on the minds of all people in the society every single day which is an
enormously strong pressure that strongly shapes mentality of people, again mostly negatively towards a war
mentality (constant competition with others), egoism, materialism, fascism, pure pursuit of profit etc.
Capitalism in a society ultimately leaves place for nothing but capitalism, it seizes every place for
itself, just like cancer, it will eventually smother religion, ethics, art, science, technology, culture, ... whatever
it is you love you will have to give up to capitalism that in the end will only be making money for the sake of
being able to make money; so a capitalist can really only be that who is either too stupid to see this or just
loves the purely self serving existence of money more than existence of anything else. { Reading the Trash
Magic manifesto, the author also sees capitalism as a religion, confirming this view is not just my own.
~drummyfish }

From a certain point of view capitalism is not really a traditional socioeconomic system, it is the failure to
establish one -- capitalism is the failure to prevent the establishment of capitalism, and it is also the
punishment for this failure. It is the continuation of the jungle to the age when technology for mass
production, mass surveillance etc. has sufficiently advanced -- capitalism will arise with technological
progress unless we prevent it, just as cancer will grow unless we treat it in very early stages. This is what
people mean when they say that capitalism simply works or that it's natural -- it's the least effort option, one
that simply lets people behave like animals, except that these animals are now equipped with weapons of

$$$Capitalism$$$ LRS Wiki 117/895

mass destruction, tools for implementing slavery, world wide surveillance etc. It is natural in the same way in
which wars, murders, bullying and deadly diseases are. It is the most primitive system imaginable, it is
uncontrolled, leads to suffering and self-destruction.

Under capitalism you are not a human being, you are a resource, at best a machine that's useful for some
time but becomes obsolete and undesired once it outlives its usefulness and potential to be exploited. Under
capitalism you are a slave that's forced to live the life of 3 Cs: conform, consume, compete. Or, as
Encyclopedia dramatica puts it: work, buy, consume, die.

Who invented capitalism? Well, it largely developed on its own, society is just responsible for not stopping
it. Capitalism as seen today has predominantly evolved from the tradition of small trade, slavery, markets,
competition, evil, war and abuse due to societal hierarchy (e.g. peasants by noblemen, poor by rich etc.),
combined with technological progress of industrial revolution (18th. - 19th century) which allowed mass
production and mass abuse of workers, as well as the information revolution (20th - 21th century) which
allowed mass surveillance, unlimited corporate control, acceleration of bullshit business and extreme mass
brainwashing, reaching capitalist singularity. Adam Smith (18th century), a mentally retarded egoist with
some extra chromosomes who tried to normalize and promote self-interest and torture of others for
self-benefit, is often called the "father of capitalism" (which is about the same honor as being called the
father of holocaust), although he didn't really invent capitalism, he merely supported its spread (saying he
invented capitalism would be like saying Hitler invented killing) -- by the same spirit this man is to be also
largely credited for the future extermination of all life.

{ My brother who's into movies shared with me a nice example of how capitalism ruined the art of movie
dubbing (which my country has a big tradition in) -- it's just one example which however reflects many other
areas that got ruined and shows why we just see this huge decline of all art and craft. Back in the day (here
during a non-capitalist regime) movie dubbing was done like a play, dubbing was performed scene by scene,
all actors were present, they all watched the scene together, then rehersed it several times and then dubbed
it together (on a single microphone); if the result wasn't satisfactory, they tried another take until they were
happy. The voice actors got time, creative freedom and were interacting together -- movie dubbing from
these times are excellent works of art that sometimes even elevate the original works higher. Nowadays
dubbing is done by each actor separately (no interaction between actors), each one scheduled at different
time, they work without rehearsal, on first take, the translation is done on tight schedule by the cheapest
translator the company finds (usually some student who's doing it as a side job at nights, soon this will
probably just be done by Al), the actors are tired as hell as they have to voice many movies in a single day,
they are pushed to work quickly and produce as much material as possible and to keep it safe so as to not
have to risk additional takes (time loss = money loss), i.e. artistic freedom completely disappears. As
different performances are recorded separately, the equipment is also more expensive (there has to be
minimum noise as many records will be added together, which will amplify noise, and also someone has to
do the mixing etc.). So not only are these dubbing complete and absolute soulless sterile shit without any
true emotion and with laughable translation errors, they are also more expensive to make. Capitalism killed
the art, humiliated it and in addition made us pay more for it. ~drummyfish }

If we continue along the lines of the valid analogy between capitalism and cancer, we notice that in the past
our society used to have a kind of autoimmunity system against this cancer -- people themselves. In human
body cancerous cells appear quite regularly, but the immunity system is able to kill those cells before they
start growing uncontrollably, as has been happening in our society. In the past we used to have this kind of
immunity too, it was the people themselves who would revolt whenever capitalist pressure became too bad
-- this has amounted for a great deal of revolutions in history. The capitalism of today however already
represent a malignant tumor as we're most likely beyong capitalist singularity, i.e. our society has a tumor
we failed to remove at an early stage (we instead decided to feed it), it got out of hand and it can no longer
be fixed now, the defensive mechanism such as revolutions are already prevented by capitalism itself, all
communication between is completely controlled, thinking of people is under control too and even if people
by a miracle decided to revolt, today's military is so powerful they can't even hope to stand a chance.

In capitalism only idiots survive because idots are those who capitalism can exploit and therefore those
it protects (so that it can keep abusing them and making them miserable). Idiots are the conformists, those
who accept lifelong slavery and misery, take loans, consume and don't cause trouble -- for that they are
allowed to have kids, get healthcare, food etc. The smart do not survive in capitalism as those are not
wanted.

$$$Capitalism$$$ LRS Wiki 118/895

On capitalism and Jews: rightists believe the issues caused by capitalism are really caused by Jews and
that somehow getting rid of Jews will fix society -- actually this is not entirely accurate; white rightists want to
remove Jews so that they (the white race) can take their place in ruling the society, so they don't actually
want to fix or remove capitalism (on the contrary, they love its presence and its mechanisms), they just want
to became the masters instead of slaves. It is definitely true Jews are overrepresented in high positions of a
capitalist society, but that's just because Jews as a race really developped the best "skills" to succeed in
capitalism as they historically bet on the right cards (focus on trade and money, decentralization of business,
spread across the world and globalization, ...) and really evolved to the race best suited for the winners of
the capitalist game. So while the rightist may be correct in the observation that Jews are winning the game,
we of course cannot agree with their supposed "fix" -- we do not want to remove the slave masters and
replace them with different ones, we want to get rid of capitalism, the unethical system itself which enables
slavery in the first place.

{ There is a famous 1988 movie called They Live which, while being a funny alines'n'stuff B movie, actually
deeply analyzes and criticizes capitalism and for its accurate predictions of the future we now live in became
a cult classic. It's been famously said that They Live is rather a documentary. | highly recommend giving it a
watch. ~drummyfish }

Attributes Of Capitalism

The following is a list of just SOME attributes of capitalism -- note that not all of them are present in initial
stages but capitalism will always converge towards them.

e slavery, oppression, loss of freedom: In capitalism people are slaves firstly as workers -- in work
time, so called wage slavery -- and secondly as consumers -- in "free" time. Banks create inflation to
devalue money people save so that they have to work constantly for their whole lives as products are
getting progressively more expensive. More and more essentially unnecessary spending purchases
are forced on people -- new smartphone every year, mortgages, gas and maintenance of cars, new
clothes according to fashion, insurance etc. Practically no one has a truly free time anymore.

e extreme waste: Bullshit products, bullshit jobs and the need for constant dynamics of the market
force to waste energy, material and human work just to keeping everything in motion, even if purely
arbitrarily. Corporations keep reinventing and reselling slightly modified version of already existing
products, one group of people is creating something while another group is destroying it, just to keep
everyone occupied. Byproduct physical waste such as plastics and chemicals are dumped in the
environment and pollute it for decades, even centuries to come. At the moment we are already
drowning in physical waste, we just export it to third world and hope they will have infinite space to
store more.

e antivirus paradox: Sustaining and artificially creating undesirable phenomena so as to build a
business in fighting it, to keep and create jobs ("firefighters starting fires").

+ artificial scarcity: In order to be able to sell something, that something has to be scarce, an
abundant resource such as air cannot be sold. Once technology emerges to make some
resource abundant, it threatens those who have a business in selling that resource. This
creates the huge interest in keeping resources scarce, sometimes by force. Corporations are
known to routinely destroy food that can still be eaten, and other goods as well. Corporations
indirectly conspire on keeping resources scarce by artificial obsolescence, outlawing old
products as "unsafe", using copyright to prevent people from recycling old intellectual works
etc.

+ artificial obsolescence: To keep businesses running companies have an interest in making
people consume even things that could otherwise last them even whole lives, so we see
phenomena like people being forced to buy new phones every every year. There used to be
the famous light bulb cartel (Phoebus cartel) that fined any bulb manufacturer that made long
lasting light bulbs, bulbs were forcefully made to last for a short time. Apple has remotely
decreased the performance of older iPhones when new ones came out. There are countless
examples.

¢ artificial crippling of technology: It is nowadays the norm to create a high tier product,
such as a CPU or a car, and then artificially cripple some of the manufactured units (limit car
engine power by software, burn parts of the CPU, ...) so as to sell them as a lower tier of that
product. It is cheaper than to separately invent several tiers of the product. So it costs the
same (actually less) to create a high end CPU as the low end one -- we could all be using high
end CPUs, but the poorer of us are forced to use the forcefully crippled versions, because

$$$Capitalism$$$ LRS Wiki 119/895

"capitalism".

¢ purposeful incompatibility in technology: In market competition products of one company
will often be incompatible with products of the competition on purpose, so as to discourage
consumers from buying it. Technology corporations create their own "ecosystems" for
consumers into which they are trying to lock them.

+ bullshit jobs, invention of bullshit products/needs: As automatization takes people's
jobs, people try to keep jobs by creating artificial bullshit, e.g. "lack of women in tech" leads to
creation of "diversity departments", politicians try to create more jobs by increasing
bureaucracy etc. This is of course in direct conflict with the base goal of civilization itself of
eliminating the need for human work. One online company even successfully sold literal
excrement (which had no actual use, it was just marketed as "funny and cool").

¢ preventing progress, sustaining status quo: Capitalism is extremely hostile towards
social progress (more leisure time, more social security, ...), i.e. the main kind of progress (all
progress should eventually serve well being of people, otherwise it's just artificial self-serving
burden). It is also, contrary to popular belief, against technological progress -- the established
corporations want to perpetuate their established businesses and will attack and destroy new
ideas that endanger it (i.e. electric cars vs fuel powered cars, food corporations vs the solution
of world hunger etc.). Capitalism prevents realization of any idea that's physically possible but
which is economically impossible, ruling out e.g. many solutions to global heating etc. { In
Trash Magic manifesto the author, a professional scientist, also shares his view that capitalism
prevents innovation. ~drummyfish }

...

e fascism: Capitalism is based on fascism, i.e. extreme hierarchy and "tribes" of which each fights to

death for its own self interest. This fight happens between companies themselves, between state and

companies, different departments inside companies, between workers and employers, between
brands on the market etc. Capitalism is a constant war against everyone else -- not even jungle has
this much conflict.

no long term planning, irresponsibility: Companies need to make immediate profit, managers

hired to new positions are expected to immediately increase profits and they don't come to stay for

long, they have no responsibility, so they simply do whatever it takes to create immediate profit
without considering any long term consequence such as pollution etc.

extreme lowering of quality of products, deterioration of art: Despite capitalist propaganda,

capitalism doesn't lead to increased quality of products -- on the contrary it seeks to find the MINIMUM

quality that will be accepted by the consumer. In seeking to minimize manufacturing cost of a single
unit, companies save money wherever they can and rather invest in marketing etc. -- for example
instead of paying several experts to produce a good, well fact-checked documentary, only one man
will be paid to create the documentary with the focus on it being "fun and engaging"” rather than
factually correct. Art is hasted, scheduled, produced on short deadlines, littered with product
placement etc.

e plutocracy, i.e. loss of (true) democracy: In capitalism only illusion of democracy is sustained,
there is no rule of the people, there is rule of the rich THROUGH people, as the rich are those who
make the laws and actually take the ruling positions and who have a tremendous power to
manipulate masses via private media. State is becoming more and more the tool of corporations
rather than a protection against them. USA, the worst case of capitalism, is infamous for having no
voting freedom, there exists just a laughable choice of two parties which are exactly the same.

e monopolies with unlimited power, degeneration of competition: The naive ideas of capitalists
that markets will magically regulate themselves quickly falls apart, basically no one even tries to
believe it anymore. In a competitive market monopolies arise in a short time who will prevent any
competition from even arising. Can a tiny starting company compete with an established corporations
with billions of dollars and thousand lawyers? No. The corporation can defeat them by gigantic
marketing, unfair practices (unfair prices etc.) despite fines, by simply buying them, legal trolling,
media trolling (negative internet reviews, ...), even physical attacks if necessary (just anonymously
pay a bunch of hackers to DDOS competition's servers etc.). Once a monopoly without competition
exists, the few advantages of competition disappear completely. A corporation doesn't respond to
demand, it creates the demand. It can do whatever it likes, it can set arbitrarily high prices, create
arbitrarily shitty products and so on, no competition is pressuring it to do otherwise, people have no
choice than to subvert.

e poverty: Despite capitalist propaganda, not everyone can be successful in capitalism (if everyone
could retire at 20, why doesn't everyone just do it?), and it is a fact that because money makes
money, the gap between the poor and the rich is becoming wider and wider (as of 2020, 8 richest

$$$Capitalism$$$ LRS Wiki 120/895

people owned as much wealth as the whole poorer half of the population). Poor people are pushed
into loans, getting into debts, trapping themselves, working multiple jobs, while their health
deteriorates increasing their debt on medical bills, decreasing their ability to work more etc.

¢ torture and killing of people: The poorest, mostly in third world countries, including children, are

forced to hard labor that destroys their lives. Whole cities live off of processing waste coming from

first world countries, e.g. disintegrating used ships with primitive tools, no work safety, breathing
cancerous fumes etc.

materialism: there exists nothing but money: By definition capitalism advises ONLY to maximize

one's profit, any other values such as human well being, peace, preservation of life environment or

progress are subverted to the goal of profit. As other values are often in conflict with profit, profit wins

and people suffer. People are being attacked, exploited, caught in traps, hunted like animals; see e.q.

usury, business with poverty and so on.

o fight culture, fascism, extreme hostility between people, disappearance of morality: The

very basis of capitalism -- competition -- nurtures people towards self interest, self centeredness and

hostility towards others while suppressing good attributes such as sharing, love for others and
altruism. With this morals decline and fascist groups arise. Furthermore the system of
overcomplicated laws are starting to replace morals, people ask "is it legal?" rather than "is it a good
thing to do?". This creates a society of dicks and psychopaths who are additionally rewarded for their
immoral behavior by becoming "successful" and wealthy. In long term this serves as a natural
selection in Darwinian evolution, immorally behaving people are actually more likely to survive and
reproduce, which leads to genes of psychopathic behavior becoming more and more common in
society -- under capitalism good people quite literally become extinct in the long run.

fear culture: To keep people consuming and constantly engaged a tension has to be kept,

comfortable people are undesirable in capitalism. So there is constantly a propaganda of some threat,

be it viruses, terrorism, pedophiles on the internet, computer viruses, killing bees etc.

e consumerism: To keep businesses running people need to consume everything, even things that
shouldn't be consumed and that could last for very long such as computers and cars. This leads to
creation of hasted low quality products (even art such as TV series) that are meant to be used and
thrown away, repairing is no longer considered.

e commerce infects absolutely everything: In advanced capitalism there is no such thing as a
commerce free zone, everything is privatized eventually and serves selfish interests. There is
nowhere to hide, capitalism has to work towards eliminating escape places as abused people will
want to naturally retreat from a place of abuse somewhere safe. Nowadays even such areas as health
care, welfare or education of children is permeated by money, ads and corporate propaganda. Even
nonprofits have to make money. Educational videos in schools are preceded with ads (as they are
played on YouTube), propagandists even legally go to school and brainwash little children (they call it
"education in financial literacy" and teach children that they should e.g. create bank accounts in the
propagandist's specific bank).

e destruction of life environment: This is nowadays already pretty clear, global heating is attributed

mainly to capitalism and is seen as maybe the most likely doom that's probably already unavoidable.

Lack of long term planning and any concern for anything but money, along with consumerism and

extreme waste (of energy, physical waste such as plastic, toxic chemicals etc.) lead to building

bullshit factories and performing unnecessary activity for economic reasons (e.g. transporting
materials over the globe for assembly, then transporting it back), leading to extreme pollution of air

(visible air smog already makes it hard to breathe in many cities), water (it is no longer safe to drink

rain water as it used to be) and food (microplastic particles are already basically EVERYWHERE, eating

them can't be avoided). Forests that are necessary for cleaning air, host many precious life forms and
are overall a key part of ecosystem are being destroyed rapidly, entire species are disappearing very
quickly. And that's just a quick sum up.

rule of idiots: Under capitalism the incompetent become successful as success isn't a matter of

competence at art but rather willingness to win for any cost, matter of persevering despite being

untalented, succumbing to unethical behavior, investing into "promoting" oneself through marketing,
social media etc. The truly skilled and intelligent often see the system is bullshit, the skilled are skilled
before they want to do their art rather than engage in fights, so they get depressed and disgusted
and leave to live in the underground, they live only for their art, opening the way for the unskilled,
stupid and at best average thirsty for success. That's why there are so many "professional" wedding
photographers who know absolutely nothing about photography, so many elementary school drop
outs who become celebrities on TikTok and YouTube who go on to advise the masses on who to vote
for in the elections, so many shitty movies, music and games, so many "programmers" and "security
experts" who can't do elementary school math etc.

$$$Capitalism$$$ LRS Wiki 121/895

¢ loss of ethical and moral behavior: Ethical behavior is a disadvantage in a competitive
environment of the market, it is a limitation. Those trying to behave ethically (e.g. fair prices or good
treatment of employees) will simply lose to the unethically behaving ones and be eliminated from the
market. Eventually there only remain unethically behaving entities, which is exactly what we are
seeing nowadays -- there basically doesn't exist a single ethically behaving corporation in the world
(which has however already been normalized and is no longer seen as an issue). { Where I live there
is an old proverb that says "self praise stinks", it's an old wisdom that correctly states people who
aren't humble are always evil idiots. Capitalism stands on massive marketing and basically goes all in
on this evil, marketing school are nothing but teaching self praise. ~drummyfish }

e anti-people design: By definition in capitalism technology is not to serve people, it is to serve
companies to make profit and abuse people, so technology spies on its users, refuses to work (DRM,
...) shows ads, forces children into purchases (predatory games), breaks on purpose so as to enforce a
paid repair etc.

e censorship: One kind of capitalist censorship is so called intellectual property (allowing "ownership"
of ideas, art etc.), but there are many more, e.g. so called moderation of social media which censors
specific political views (deemed "politically incorrect" and hence "dangerous" for the advertising
potential or brand of the platform) or sharing of certain facts (e.g. those revealing unethical practice
of the platform itself, negative reviews of its products etc.). Privately owned media lawfully censor
and manipulate information so as to manipulate people in whichever way they see will bring them
most profit. While "intellectual property" is marketed as "protecting intellectual workers", in practice it
serves corporations and states to do whatever they want, from political censorship, deception and
implementing surveillance (justified by "antipiracy") to legal bullying and implementing artificial
scarcity ("no, you can't grow this type of food on your field as the plant is patented; only we can grow
it and you have to buy it from us in order to live").

e surveillance: Companies want to analyze behavior of people, manipulate them, target ads, spam,
train neural networks on their data etc., so there is a huge interest in applying surveillance. Indeed,
this is exactly what we see in practice -- this is not even a conspiracy theory, cases of revealed mass
surveillance are almost daily news.

e extreme brainwashing and propaganda: Marketing reaches extreme levels in capitalism, utilizing
advanced psychological tricks and repetition to the point of becoming a torture, with the goal of
teaching people brand loyalty, consumerist behavior etc. Application of this brainwashing even on
children has already been normalized. Entrepreneurs create cults of personalities. There is now even
a "leqit" job called an influencer whose sole purpose is in spreading corporate propaganda on the
Internet.

e criminality: This is a direct consequence of poverty, awful working conditions, fight culture and
overall diminishing morality. Poor people (the absolute majority in the system) become desperate and
do desperate things -- of course, all blame is put on them, not on those who are responsible for their
poverty.

e instability: Lack of long term planning, extreme interdependence, monopolies over essential
resources, fragility of the market, increasing wealth gap, pushing workers to poverty while taking
away social security, eliminating self sufficiency, extreme waste and other phenomena pose great
dangers of market collapses, violent strikes and revolutions, running out of resources, destruction of
living environment and other disasters and even societal collapse.

* need for extremely complex market control and laws, burdening society: As corporations are
absolutely unethical and pursue evil goals such as enslaving workers and abuse of consumers, there
have to be an extremely complex set of constantly evolving laws and bureaucracy just to somehow
"make corporations behave". However laws are imperfect and corporations work 24/7 on bypassing
them as well as on attacking and eliminating the laws themselves via lobbyist etc. This creates a
constant, extremely expensive legal war-like game in which everyone has to take part, which is
completely arbitrary and unnecessary and which eventually corporations will likely win.

e uncontrolled growth: Capitalism is likened to cancer as it requires a constant uncontrolled growth
which on a planet of limited resources inevitably leads to a catastrophic scenario.

¢ hyperspecialization, loss of self sufficiency: Entities (people, cities, companies, states, ...) lose
self sufficiency as they hyperspecialize in some task and in everything else rely on someone else. This
complete dependence creates slavery and danger -- in an event of a blackout for example people
cannot survive as they cannot make their own food, they can't repair their basic tools etc.

¢ loss of humanity: In capitalism humans are just consumers, machines for production and
"resources" -- corporations now routinely use these terms (human resources department etc.). People
are brainwashed to no longer even see it as concerning to be called such terms. People's worth is only
in how much they can work or consume.

$$$Capitalism$$$ LRS Wiki 122/895

¢ abuse of animals: In capitalism animals are just products and resources, they are kept in very bad
conditions just to be killed for meat or other purpose. They are slaughtered by millions just so we can
overeat to morbid obesity. Maximizing profit dictates no money should be spent on animal comfort.

e productivity cult: People are brainwashed and forced into becoming robots whose sole purpose is to
produce. Working overtimes, skipping lunch, minimizing sleep etc. has already become part of the
work culture for example in USA and Japan.

¢ financial crises: Crises are as regular and certain in capitalism as rain is in the nature, and possibly

much more unpredictable; every crisis hurts everyone but the strongest corporations, whom it in turn

makes stronger. People become poorer and great many small and mid-size businesses, i.e. potential
competition to the big guys, either die to a bankrupt or are forced to let themselves be devoured by
the big guys. This further accelerated the scissors effect, making poor poorer (i.e. better abusable)
and rich richer. This is also yet another reason why the small "good guy"/"not only for profit"
companies always lose, they simply refuse to steal the food of others to eat themselves obese before

a famine and so they will die during the next famine or the next or the one after it. Only the bad guys

survive many series of crises.

everything is fake: Everything is rotten and corrupted on the inside with an extreme effort towards

putting up a misleading good looking facade. TV shows, including "news", are all staged (even those

swearing not to be, no producer is going to invest money in something depending on pure luck),
smiles and emotion of people you meet in workplace or see on ads, women's tits, butts and faces,
men's muscles, photos on social media, food that has basically no food in it, even news and facts,
everything is fake. Investigating any area (government, working conditions, technology, healthcare,
education, charities, academia and "science", ...) a bit in depth practically always leads to unrevealing
how corrupt it actually is despite it looking nice and ideal at the first look.

loss of ownership: Even that which is most saint to a capitalist -- property and the ability to own

things -- is greatly lost under capitalism. This happens with the trend of everything becoming a

service, a typical example of which is so called "software as a service". While in the past one would

buy a physical copy of a program that he would at least physically own forever, nowadays many
programs become a subscription service, e.g. games, movies and music are no longer something you
buy but just buy a one time ticket for. But this trend is everywhere, artificial obsolescence tries to
limit durability of physical goods such electronic devices so that one has to keep consuming them like

a service.

e rape effect: The mechanisms of capitalism work in such ways that everyone gets progressively more
raped with any further advance of capitalism.

e endangering existence of all life: The mentioned destruction of environment, lack of long term
planning, irresponsibility and instability along with creating a dangerous overdependence on
technology and interconnections of self insufficient states and cities is just waiting for a disaster such
as CME that immediately collapses the civilization and consequently endangers all life on Earth e.qg.
by meltdowns in nuclear plants or possible nuclear wars as a consequence of panic. The absolute
preference of immediate profit is hostile towards investments in future and precautions. RIP.

How It Works

The "old" capitalism, or perhaps its basic forms, that socialist writers have analyzed very well is
characterized mainly by abuse of workers by capitalists who declare to "own" means of production such as
factories, land and machines -- as e.g. Kropotkin has written in The Conquest of Bread, it is poverty that
drives capitalism because only a poor man who just needs ANY salary for himself and his family will accept
horrible working conditions and low pay, simply because he has no other choice -- a capitalist exploits this,
"employs" (enslaves) the poor and then only pays them as much as to keep the barely alive and working for
him, and he further has the audacity of calling himself an "altruist” who "feeds" people and "gives them a
work"; a capitalist employs workers in his factory like he employs chicken in egg factories or pigs in
slaughterhouses -- in modern days many may fall to the illusion that workers aren't poor anymore as they
may posses smartphones and big screen TVs, but in essence a worker still lives salary to salary and is in
desperate need of it; without a salary he will quickly end up starving in the street. Workers do labor that's in
itself worth a lot but the capitalist only gives him a small salary, firstly to gain own profit and secondly to
keep the worker poor because again, only a poor man will work for him. This is also why capitalists are
against anything that would end poverty, such as universal basic income. If the workers owned the factory
collectively and didn't have to cut the profit off their labor, they wouldn't have to work so many hours in such
harsh conditions at all, it's only because there is a capitalist leech at the top that everyone has to slave
himself to death so that the leech can get enormously rich.

$$$Capitalism$$$ LRS Wiki 123/895

Here a capitalist says to the worker: "I am not forcing you to slavery, if you don't like the working conditions,
go elsewhere". Of course, this is a laughable insult -- the capitalist knows very well there is nowhere else to
go; wherever you go work in capitalism, you get exploited -- you can only do as much as choose your
slavemaster. A capitalist will then say: "start your own business then", which again is a complete idiocy -- it's
extremely hard to succeed in business, not everyone can do it, those who have established businesses won't
let anyone on the market, and of course it's the immoral thing to do, the capitalist is just telling you to start
doing what he's doing: abuse others. If you do start your business, he will be sure to attack you as a
competition and with his power he will very likely be able to stop your business. So this advice is similar to
that of "go start your own country if you don't like this one" -- he might as well tell you to move to another
planet.

The new, modern capitalism is yet worse as it takes full advantage of technology never before seen in
history which allows extreme increase of exploitation of both workers and consumers -- now there are
cameras and computers watching each worker's individual production, there are "smart" devices spying on
people and then forcing ads on them, there are loud speakers and screens everywhere full of propaganda
and brainwashing, nowhere to escape. Now a single capitalist can watch over his factories all over the world
through Internet, allowing for such people to get yet much richer than we could ever imagine.

While the old capitalism was more of a steady slavery and the deterioration of society (life environment,
morality, art, ...) by it was relatively slow (i.e. it seemed to be somewhat "working"), nowadays, in the new
capitalism the downfall of society accelerates immensely. In countries where capitalism is newly instated,
e.g. after the fall of an old regime, it indeed seem to be "working" for a short time, however it will never last
-- initially when more or less everyone is at the same start line, when there are no highly evolved
corporations with their advanced methods of oppression, small businesses grow and take their small shares
of the market, there appears true innovation, businesses compete by true quality of products, people are
relatively free and it all feels natural because it is, it's the system of the jungle, i.e. as has been said,
capitalism is the failure to establish a controlled socioeconomic system rather than a presence of a
purposefully designed one. Its benefits for the people are at this point only a side effect, people see it as
good and continue to support it. However the system has other goals of its own, and that is the development
and constant growth that's meant to create a higher organism just like smaller living cells formed us, multi
cell organisms. The system will start being less and less beneficial to the people who will only become cells in
a higher organism to which they'll become slaves. A cell isn't supposed to be happy, it is supposed to
sacrifice its life for the good of the higher organism.

{ This initial prosperous stage appeared e.g. in Czechoslovakia, where | lived, in the 90s, after the fall of the
totalitarian regime. Everything was beautiful, sadly it didn't last longer than about 10 years. ~drummyfish }

Slowly "startups" evolve to medium sized businesses and a few will become the big corporations. These are
the first higher entities that have an intelligence of their own, they are composed of humans and technology
who together work solely for the corporation's further growth and profit. A corporation has a super human
intelligence (combined intelligence of its workers) but has no human emotion or conscience (which is
suppressed by the corporation's structure), it is basically the rogue Al we see in sci-fi horror movies.
Corporation selects only the worst of humans for the management positions and has further mechanisms to
eliminate any effects of human conscience and tendency for ethical behavior; for example it works on the
principle of "I'm just doing my job": everyone is just doing a small part of what the whole company is doing
so that no one feels responsible for the whole or sometimes doesn't even know what he's part of. If anyone
protests, he's replaced with a new hire. Of course, many know they're doing something bad but they have no
choice if they want to feed their families, and everyone is doing it.

Deterioration of society is fast now but people are kept in a false sense of a feeling that "it's just a temporary
thing", "it's this individual's fault (not the system's)" and that "it's slowly getting better", mainly with the help
of 24/7 almighty media brainwashing. Due to heavy greenwashing, openwashing etc. most people are for
example naively convinced that corporations are becoming more "environment friendly", "responsible”,
"open source" ("Microsoft isn't what it used to be", ...) etc., as if a corporation had something akin emotion
instead of pure desire for profit which is its only goal by definition. A corporation will repeat ads telling you it
is paying black handicapped gays to plant trees but internally no one gives a shit about anything but making
more money, a manager's job is just to increase profit, waste is increasing and dumped to oceans when no
one is looking, bullshit is being invented to kickstart more bullshit business which leads to more need for
energy wasting (unnecessary transportation, upkeep of factories and workplaces, invention of bullshit
technology to solve artificial problems arising from artificial bullshit). A lie repeated 1000 times a day will

$$$Capitalism$$$ LRS Wiki 124/895

beat even truth that's evident to naked eye, basic logic and common sense. Even when sky is littered with
ads, cities are burning and people are working 20 hours a day, a capitalist will keep saying "this is a good
society"”, "we are just in a temporary crisis", "it is getting better" and "I care about the people", and people
will take it as truth.

Corporations make calculated decisions to eliminate any competition, they devour or kill smaller businesses
with unfair practices (see e.g. the Microsoft's infamous EEE), more marketing and by other means, both legal
and illegal. They develop advanced psychological methods and extort extreme pressure such as
brainwashing by ads to the population to create an immensely powerful propaganda that bends any natural
human thinking. With this corporations no longer need to satisfy the demand, they create the demand
arbitrarily. They create artificial scarcity, manipulate the market, manipulate the people, manipulate laws
(those who make laws are nowadays mostly businessmen who want to strengthen corporations whose shares
they hold and if you believe voters can somehow prevent such psychopaths getting this power, just take a
look literally at any parliament of any country). At this point they've broken the system, competition no
longer works as idealized by theoretical capitalists, corporations can now do practically anything they want.

This is an evolutionary system in which the fitness function is simply the ability to make capital. Entities
involved in the market are simply chosen by natural selection to be the ones that best make profit, i.e. who
are best at circumventing laws, brainwashing, hiding illegal activities etc. Ethical behavior is a disadvantage
that leads to elimination; if a business decides to behave ethically, it is outrun by the one who doesn't have
this weakness.

The unfair, unethical behavior of corporations is still supposed to be controlled by the state, however
corporations become stronger and bigger than states, they can manipulate laws by lobbying, financially
supporting preferred candidates, favoring them with their propaganda etc. States are the only force left
supposed to protect people from this pure evil, but they are too weak; a single organization of relatively few
people who are, quite importantly, often corporation share holder, won't compete against a plethora of the
best warriors selected by the extremely efficient system of free market. Furthermore voters, those who are
supposed to choose their protectors, are just braindead zombies now who literally do what their cellphones
shows them on its display. By all this states slowly turn to serving corporations, becoming their tools and
then slowly dissolve (see how small role the US government already plays). Capitalist brainwashing is so
strong that it even makes people desire more torture -- see so called "anarcho" capitalism which the
stupidest of our population have already fallen for and which is basically about saying "let's get rid of
anything that protects us against absolute capitalist apocalypse". "Anarcho" capitalism is the worst stage of
capitalism where there is no state, no entity supposed to protect the people, there is only one rule and that is
the unlimited rule of the strongest corporation which has at its hands the most advanced technology there
ever was.

Here the strongest corporation takes over the world and starts becoming the higher organism of the whole
Earth, capitalist singularity has been reached. The world corporation doesn't have to pretend anything at this
point, it can simply hire an army, it can use physical force, chemical weapons, torture, unlimited surveillance,
anything to achieve further seize of remaining bits of power and resources.

People will NOT protest or revolt at this point, they will accept anything that comes and even if they
suffer everyday agony and the system is clearly obviously set up for their maximum exploitation, they will do
nothing -- in fact they will continue to support the system and make it stronger and they will see more
slavery as more freedom; this tendency is already present in rightists today. You may ask why, you think that
at some point people will have enough and will seize back their power. This won't happen, just as the billions
of chicken and pigs daily exploited at factories won't ever revolt -- firstly because the system will have
absolute control over people at this point, they will be 100% dependent on the system even if they hate it,
they will have proprietary technology as part of their bodies (which they willingly admitted to in the past as
part of bigger comfort while ignoring our warnings about loss of freedom), they will be dependent on drugs of
the system (called "vaccines" or "medicine"), air that has to be cleaned and is unbreathable anywhere one
would want to escape, 100% of communication will be monitored to prevent any spark of revolution etc.
Secondly the system will have rewritten history so that people won't see that life used to be better and
bearable -- just as today we think we live in the best times of history due to the interpretation of history that
was force fed us at schools and by other propaganda, in the future a human in every day agony will think
history was even worse, that there is no other option than for him to suffer every day and it's a privilege he
can even live that way.

$$$Capitalism$$$ LRS Wiki 125/895

We can only guess what will happen here, a collapse due to instability or total destruction of environment is
possible, which would at least save the civilization from the horrendous fate of being eternally tortured. If the
system survives, humans will be probably be more and more genetically engineered to be more submissive,
further killing any hope of a possible change, surveillance chips will be implanted to everyone, reproduction
will be controlled precisely and finally perhaps the system will be able, thanks to an advanced Al, to exist and
work more efficiently without humans completely, so they will be eliminated. This is how the mankind ends.

{ So here you have it -- it's all here for anyone to read, explained and predicted correctly and in a completely
logical way, we even offer a way to prevent this and fix the system, but no one will do it because this will be
buried and censored by search engines and the 0.0000000000001% who will find this by chance will dismiss
it due to the amount of brainwashing that's already present today. It's pretty sad and depressive, but what
more can we do? ~drummyfish }

Capitalist Propaganda And Fairy Tales

Capitalist brainwashing is pretty sophisticated -- unlike with centralized oppressive regimes, capitalism has a
decentralized way of creating and spreading propaganda, in ways similar to for example self-replicating and
self-modifying malware in the world of software. Creators and promoters of capitalist propaganda are mostly
people who are unaware of doing so, they have been brainwashed and programmed by the system itself to
behave that way, for example just by being exposed to hearing the capitalist fairy tales since they were born.
Some examples of common capitalist propaganda you will probably encounter are the following:

e "Capitalism is freedom." -- This is of course a complete twist of the word freedom: capitalism
promotes freedom of market which goes against the freedom of people. Il.e. the freedom enabled by
capitalism is the freedom to abuse others; the freedom to restrict freedoms of others, which is of
almost the polar opposite of genuine freedom.

¢ "In capitalism everyone can make it if he only works hard." -- This is firstly of course not even logically

possible, it's just as claiming that everyone can win the Olympic games; to reach the top in an

extremely competitive system not only do you have to work hard, you also have to be born with the
right talent, in the right place, to the right family, and be immensely lucky to be in right places in right
times and make correct guess decisions in situations in which it is impossible to know the correct
decision. Even if you work 24/7 without sleep, there will be thousands of others who do the same,
your success is a pure bet on lottery. Capitalist fairy tales make heavy use of the survivorship
bias -- you will see movies only about the successful people who are asked how they achieved
success and who answer along the lines "l just worked hard". Indeed they did, but this doesn't imply
that anyone working hard will succeed, this is the same as taking an advice from a lottery winner; if
you ask a lottery winner how he won the lottery, he will simply say "I bet all I had on a random
number". Following such advice is of course just about the worse decision you can make. If everyone
can make it, why doesn't everyone do it, why don't we have a world consisting exclusively of
billionaires?

"Capitalism just works, capitalism is natural, capitalism means progress etc." -- Capitalism doesn't

work, it's just hard to get rid of. Progress isn't dependent on capitalism, progress can't be

stopped and will be here even without capitalism. If it "works and is natural”, then it works and is
natural natural in the same way as for example cancer or wars. This doesn't mean we should support
it or see it as something positive. Most of other similar lies are discussed in sections above.

Fairy tales about about the rich capitalist altruist: you will hear stories about famous capitalists that

paint them as nice guys who give to poor for free, who do manual work despite not having to etc. This

is just part of cult of personality propaganda and applying cheap populist tricks to deceive masses. A

rich guy giving $100 to a poor kid on camera is an extreme powerful marketing that costs $100,

which for a billionaire is of course a laughable cost. The fact is that every billionaire is the best player
of the most dirty game humanity has invented and researching any such guy reveals, basically in

100% of cases, that he was in fact the worst imaginable psychopath -- Edison killed animals with

electric current as part of marketing, the owner of McDonald's stole the idea and know-how from

McDonald brothers ALONG WITH their own name, similar thing happened with KFC, Steve Jobs was

infamous for his psychological pressure on workers equating torture, the working condition's in Ford's

factories were basically the same as those for black African slaves, etcetc. Trying to find a rich
man that's good is like trying to find a shark who's a vegetarian.

¢ "Capitalism isn't perfect but it's the best system we know.": complete bullshit, capitalism is probably
the worst system that there ever was. See this whole article.

$$$Capitalism$$$ LRS Wiki 126/895

¢ "Successful capitalists are the most intelligent people.": on the contrary, mostly the stupidest people
become successful -- success in capitalism depends mostly on luck and lack of moral obstacles, i.e.
doing whatever it takes to succeed such as stabbing friends in the back, public lying, exploitation of
workers etc. High intelligence is actually a disadvantage in this manner as it makes one see all the
negative consequences of his behavior, a smart man sees that by engaging in capitalism he is not just
hurting and even killing other people, but even e.g. working towards destruction of art, culture, living
environment and possibly life itself. Being a successful businessman in capitalism is like steering a
plane full of people, including oneself, towards ground -- only an idiot can do it.

¢ TODO: moar

So What To Replace Capitalism With?

At this point basically anything else is better. But we here advocate less retarded society.

See Also

e dystopia

e fascism

¢ "anarcho" capitalism
1984

e corporation

¢ zapitalism

capitalist_singularity

Capitalist Singularity

Capitalist singularity is a point in time at which capitalism becomes irreversible and the cancerous growth of
society unstoppable due to corporations taking absolute control over society. It is when people lose any
power to revolt against corporations as corporations become stronger than states and any other collective
effort towards their control.

This is similar to the famous technological singularity, the difference being that society isn't conquered by a
digital Al but rather a superintelligent entity in a form of corporation. While many people see the danger of
superintelligent Als, surprisingly not many have noticed that we've already seen rise of such Als --
corporations. A corporation is an entity much more intelligent than any single individual, with the single
preprogrammed goal of profit. A corporation doesn't have any sense of morals as morals are an obstacle
towards making profit. A corporation runs on humans but humans don't control them; there are mechanisms
in place to discourage moral behavior of people inside corporations and anyone exhibiting such behavior is
simply replaced.

capitalist_software

Capitalist Software

Capitalist software is software that late stage capitalism produces and is practically 100% shitty modern
bloat and malware hostile to its users, made with the sole goal of benefiting its creator (often a corporation).
Capitalist software is not just proprietary corporate software, but a lot of times "open source", indie software
and even free software that's just infected by the toxic capitalist environment -- this infection may come
deep even into the basic design principles, even such things as Ul design, priorities and development
practices and subtle software behavior which have simply all been shaped by the capitalist pressure on
abusing the user.

{ Seriously | don't have enough brain to understand how anyone can accept this shit. ~drummyfish }

Capitalist software largely mimics in technology what capitalist economy is doing in society -- for example it
employs huge waste of resources (computing resources such as RAM and CPU cycles as an equivalent to

Capitalist Software LRS Wiki 127/895

natural resources) in favor of rapid growth (accumulation of "features"), it creates hugely complex,
interdependent and fragile ever growing networks (tons of library of hardware dependencies as an
equivalent of import/export dependencies of countries) and employs consumerism (e.g. in form of mandatory
frequent updates). These effects of course bring all the negative implications along and lead to highly
inefficient, fragile, bloated, unethical software.

Basically everyone will agree that corporate software such as Windows is to a high degree abusive to its
users, be it by its spying, unjustified hardware demands, forced non customizability, price etc. A mistake a lot
of people make is to think that sticking a free license to similar software will simply make it magically friendly
to the user and that therefore most EQSS programs are ethical and respect its users. This is sadly not the
case, a license if only the first necessary step towards freedom, but not a sufficient one -- other important
steps have to follow.

A ridiculous example of capitalist software is the most consumerist type: games. AAA games are pure evil
that no longer even try to be good, they just try to be addictive like drugs. Games on release aren't even
supposed to work correctly, tons of bugs are the standard, something that's expected by default, customers
aren't even meant to receive a finished product for their money. They aren't even meant to own the product
or have any control over it (lend it to someone, install it on another computer, play it offline or play it when it
gets retired). These games spy on people (via so called anti-cheat systems), are shamelessly meant to be
consumed and thrown away, purposefully incompatible ("exclusives"), bloated, discriminative against
low-end computers and even targeting attacks on children ("lootboxes"). Game corporations attack and take
down fan modification and remakes and show all imaginable kinds of unethical behavior such as trying to
steal rights for maps/mods created with the game's editor (Warcraft: Reforged).

But how can possibly a FOSS program be abusive? Let's mention a few examples:

¢ Being a bloat monopoly.
¢ Allowing maintenance cost to be high and prioritizing e.g. features over maintainability leads to

programs being expensive to maintain which discriminizes against developers unable to pay this
maintenance cost. If a rich corporation intentionally makes their program bloated and expensive to
just maintain, it ensures no one poor will be able to fork the software and maintain it (let alone shape
it into something better), which effectively removes the possibility of an ethical competition being
made out of their "open source" program.

¢ Bloat, intentional obscurity and update culture may lead to de-facto (as opposed to
de-jure) limitations of basic freedom conditions, despite a free license. Specifically freedom
1 (to study the software, which may be unnecessarily difficult and expensive) and 2 (to modify the
software, which requires its understanding, unnecessarily high cost of dealing with bad code and the
ability to compile it which may be non-trivial). Therefore a company may, on paper, provide the rights
to study and modify their program, but keep the actual know-how of the program's working and
modification private, de-facto becoming the program's owner and sole controlling entity.

¢ Allowing proprietary dependencies, which happens especially in gpen source. While free software
usually avoids this, open source is happy with e.g. Windows-only programs which of course requires
the users to run abusive code in order for the program to function.

e Unnecessarily high hardware demands and dropping support for old hardware which drives
consumerism and discriminates against poor people and people who just don't want to "consoom"
hardware. A group can make "open source" software that intentionally requires the latest hardware
that they just happen to sell (e.g. gaymes with "AAA graphics"), even if the software might in theory
run on older hardware. Possible "fixes" of this by third parties can be prevented by the above
mentioned techniques.

¢ Allowing bloat to increase the risk of security vulnerabilities and bugs (which may in some
ares be fatal and lead to literal deaths).

¢ Obscurity and interdependence may be used to successfully hide malicious features even
within publicly accessible code. See for example the anti-Russian "protestware" cases such as
node-ipc, an "open source" package that introduced malicious file-wiping code and infected all
software depending on it.

¢ Introducing dangerous dependencies: for example a fully free software may be unnecessarily
designed as cloud software which increases the risk of its non functionality e.g. in cases of Internet
blackouts (or just any loss of connection).

e Licenses can by bypassed, e.g. copyleft was legally eliminated by Goodle's Android which is based
on copylefted Linux: their proprietary Play Store is a 3rd party program to which the copyleft doesn't

Capitalist Software LRS Wiki 128/895

apply but which is essential for Android and serves to control Android (which should have been
prevented by the copyleft). This is an example of a FOSS "protection mechanism" failing under
capitalist pressure.

¢ Setting up discriminatory, fascist and toxic centralized development communities that
de-facto own and control the software and use discriminatory practices and censorship, e.g. with
codes of conduct. This allows to bully and "cancel" developers who are, for political or any other
reason, unwelcome.

¢ Even free software may behave in unethical ways. For example a company that profits from
gambling may create a completely "FOSS" game for children that however teaches them gambling so
that when they grow up they'll be more likely to become their victims.

The essential issue of capitalist software is in its goal: profit. This doesn't have to mean making money
directly, profit can also mean e.g. gaining popularity and political power. This goal goes before and
eventually against goals such as helping and respecting the users. A free license is a mere obstacle on the
way towards this goal, an obstacle that may for a while slow down corporation from abusing the users, but
which will eventually be overcome just by the sheer power of the market environment which works on the
principles of Darwinian evolution: those who make most profit, by any way, survive and thrive.

Therefore "fixing" capitalist software is only possible via redefinition of the basic goal to just developing
selfless software that's good for the people (as opposed to making software for profit). This approach
requires eliminating or just greatly limiting capitalism itself, at least from the area of technology. We need to
find other ways than profit to motivate development of software and yes, other ways do exist (morality,
social status, fun etc.).

cat v

Cat-v

Cat-v.org (accessible at http://cat-v.org) is a minimalist hacker website describing itself as a random
contrarian insurgent organization which promotes critical thinking, free speech, examines technology from
minimalist point of view, opposes orthodoxy and talks about wider context of technology such as politics,
society and philosophy; the site hosts a few "subsites", e.g. those related to Plan 9 OS and Go language,
however most famous is its encyclopedia of things considered harmful (http://harmful.cat-v.org/). The whole
site, especially the "harmful" section (which was the first one), revolves around the phrase "considered
harmful" -- this is basically a computer science academic meme that started with a 1968 paper named "Go
To Statement Considered Harmful" which was later followed by dozens of similarly named articles; cat-v is
taking this to the next level by building a whole website about all things considered harmful. The name of the
site itself comes from Rob Pike's 1983 presentation "UNIX Style, or cat -v Considered Harmful" that criticized
the -v flag of the Unix cat program as such flag, strictly speaking, violates the Unix philosophy (cat should
only concatenate files, the flag makes it do something that should rather be done by another program).
Though maybe coincidental, the name is also similar to CatB (a short for famous hacker essay/book
Cathedral and Bazaar). The site is very nice, made in plain HTML minimalist style, working with HTTP and
besides others contains a ton of great quotes on every topic, there is also an IRC, mailing list and a blog.

The section "considered harmful" contains many things, even quite general ones, probably to provoke
thought -- one should likely not see a thing present on the list as something we have to always necessarily
get rid of -- though many times we should! -- sometimes we just may think about how to improve the thing or
minimize its negative impact; try to think of harmful things like "things that suck"; everything sucks, some
things just suck less. Among things listed under the harmful section are besides others all software, OOP,
GNU, Linux, C++, dynamic linking, Java, XML, vim, Emacs, GPL (one recommended alternative being CCO
instead), Perl, standards, Sweden, gay marriage, marriage, children, words, intellectual property, religion,
science, minimum wage, the Avatar movie, Wikileaks, people, economics, global warming scaremongering,
security theater etc.

Cat-v has existed since at least 2005 (according to Internet Archive) and was started by Uriel M. Pereira, a
minimalist hacker who greatly contributed to a lot of suckless software and who committed suicide in 2012.
Suckless and cat-v seem to be pretty close -- suckless.org has its own section of harmful things called simply
"sucks".

Cat-v LRS Wiki 129/895

From LRS point of view cat-v is based in great many ways, mainly its focus on the big picture and wider
context or technology, promotion of minimalism, freedom of speech and thinking and anti-orthodoxy -- it is
not a soyboy site, good quality sites without S]Wery are greatly appreciated. However we would also find
disagreements e.g. on Plan 9 and Go, which we consider greatly harmful. And of course some politics etc.

See Also

e suckless

ccO

CCO

CCO0 is a waiver (similar to a license) of copyright, created by Creative Commons, that can be used to
dedicate one's work to the public domain (kind of).

Unlike a license, a waiver such as this removes (at least effectively) the author's copyright; by using CCO the
author willingly gives up his own copyright so that the work will no longer be owned by anyone (while a
license preserves the author's copyright while granting some rights to other people). It's therefore the most
free and permissive option for releasing intellectual works. CCO is designed in a pretty sophisticated way, it
also waives "neighboring rights" (e.g. moral rights; waving these rights is why we prefer CCO over other
waivers such as unlicense), and also contains a fallback license in case waiving copyright isn't possible in a
certain country. For this CCO is one of the best ways, if not the best, of truly and completely dedicating works
to public domain world-wide (well, at least in terms of copyright). In this world of extremely fucked up
intellectual property laws it is not enough to state "my work is public domain" -- you need to use something
like CCO to achieve legally valid public domain status.

WATCH OUT: don't confuse CCO with Creative Commons Public Domain Mark (apart from name the
symbols are also a bit similar), the latter is not a license or waiver, just a tag, i.e. CCO is used to release
something to the public domain, while PD mark is used to mark that something is already in the public
domain (mostly due to being old).

CCO0 is recommended by LRS for both programs and other art -- however for programs additional waivers of
patents should be added as CCO doesn't deal with patents. CCO is endorsed by the ESF but not OSI (who
rejected it because it explicitly states that trademarks and patents are NOT waived).

It's nice that CCO became quite widely used and you can find a lot of material under this waiver, but
BEWARE, if you find something under CCO, do verify it's actually valid, normies often don't know what CCO
means and happily post derivative works of proprietary stuff under CCO.

Some things under CCO include Librivox audiobooks, Dusk OS, Wikidata database, great many things on

sites like Wikimedia Commons, opengameart (see e.g. Kenney), Blendswap, freesound etc., whole Esolang
Wiki, OSdev Wiki (since 2011), Encyclopedia Dramatica, LRS software (Anarch, small3dlib, raycastlib, SAF,

comun) and LRS wiki, books like The Pig and the Box (anti DRM child story) or Cost of Freedom, some fonts
by dotcolon, Lix (libre game), evlisp minimalist Lisp (from book "Lisp From Nothing") and many others.

CccC

CC

CC can stand for:

¢ Creative Commons

e C compiler
o “ea
censorship

CC LRS Wiki 130/895

Censorship

This page is not accessible in your country... NOT :)

Censorship means intentional effort towards preventing exchange of certain kind of information among other
individuals, for example suppression of free speech, altering old works of art for political reasons, forced
takedowns of copyrighted material from the Internet etc. Note that thereby censorship does NOT include
some kinds of data or information filtering, for example censorship does not include filtering out noise such
as spam on a forum or static from audio (as noise is a non-information) or PERSONAL avoidance of certain
information (e.g. using adblock or hiding someone's forum posts ONLY FOR ONESELF). Censorship often
hides under euphemisms such as "moderation", "safe space", "filter", "protection", "delisting", "review"
etc. Censorship is always wrong -- good society must be compatible with truth, therefore there must
never be a slightest reason to censor anything -- whenever censorship is deemed the best solution,
something within the society is deeply fucked up. In current society censorship, along with propaganda,
brainwashing and misinformation, is extremely prevalent and growing -- it's being pushed not only by
governments and corporations but also by harmful terrorist groups such as LGBT and feminism who force
media censorship (e.g. that of Wikipedia or search engines) and punishment of free speech (see political
correctness and "hate speech").

Sometimes you can actually exploit censorship to get to good content -- look up a block list (e.q.
https://en.wikipedia.org/wiki/Category:Blocked_websites_by country), then you have a list of interesting
places you probably want to visit :)

Sometimes it is not 100% clear which action constitutes censorship: for example categorization such as
moving a forum post from one thread to another (possibly less visible) thread may or may not be deemed
censorship -- this depends on the intended result of such action; moving a post somewhere else doesn't
remove it completely but can make it less visible. Whether something is censorship always depends on the
answer to the question: "does the action prevent others from information sharing?".

Modern censorship is much more sophisticated; in old days, e.g. those of USSR pseudocommunist
regimes, it was simple: stuff was reviewed and it either got censored or it passed, governments even openly
admitted to censorship and stated it was simply necessary for the advancement of society. People wanted to
talk but the government didn't want to let them. Not so nowadays, it got much advance in several ways:

1. Censorship is no longer done just by the state, but by corporations, various social subgroups and even
individuals as well, as so called self censorship, often automatically and subconsciously. In wanting to
talk you are not just standing against one big bad guy who wants you silent, there are hundreds of
sneaky bastards waiting to sue you, report you, ban you, cancel you, even physically terminate you if
you touch anything controversial in one way or another.

2. NO ONE ADMITS TO CENSORSHIP NOWADAYS, no matter how blatantly obvious their
censorship is, exactly in the capitalist "deny EVERYTHING" spirit -- Wikipedia explicitly states "we
are not censored" and then literally removes and blocks inclusion of legitimate information it deems
"harmful". You point it out, they ban you. They will say "no, it's not censorship, it is MODERATION,
PROTECTION, DELISTING, free speech has its limits, it is not a ban, it is deplatformization, blocking of
hate speech is not censorship blablabla ..." -- they are inventing hundreds of new terms so that they
don't have to use the word censorship.

3. There is a lot of soft, undercover and hard to prove censorship -- no longer is something either
censored or not censored, but it may be shadowbanned, hugely underanked in search, censored only
to specific eyes, modified rather than deleted etc. For example Google censors thousands of websites;
you WILL find those websites if Google sees you are looking specifically for those to test their
censorship, but it won't ever show it to people who don't know about the site and are legitimately
looking for the information they contain. Maybe they will show the site on the 100th page of the
search results, which is equivalent to just blocking it completely, but they can say "haha we are not
actually censoring it, gotcha". TV series and movies are silently edited retroactively in the cloud to no
longer include scenes deemed politically incorrect, no one notices as no one owns physical copies
anymore. In the endgame capitalists will just be constantly updating history, let's say they will just
change the characters in Godfather to LGBTQ queer black women and since the movie will only be
streamed from the cloud, without any old copied of the original existing, they will just say "the movie
has always been like that, the author supported our politics". And so on.

Censorship LRS Wiki 131/895

There exist tools for bypassing censorship, e.g. proxies or encrypted and/or distributed,
censorship-resistant networks such as Tor, Freenet, 12P or torrent file sharing. Watch out: using such tools
may be illegal or at least make you look suspicious and be targeted harder by the surveillance.

Examples

Censorship is so frequent that it's hard to give just a short list of examples, especially nhowadays, but here
are a few:

e Encryption provides mathematical ways of implementing censorship in communication.

e Copyright enables authors to censor their works at will and enforce this censorship legally, for any
reason whatsoever -- this also subsequently leads to further censorship by media hosting websites
such as YouTube, to mass deletions of valuable works from public archives and so on.

* Wikipedia practices very strong censorship, it has a list of banned sources (calling it by an euphemism
of "deprecated" sources) which include even such big media as Daily Mail, furthermore a lot of things
which average Wikipedia editor dislikes are censored, e.g. the url to the controversial site 8kun
(https://8kun.top) must not be mentioned in its article (take a look at page source comment, March
2024). Content Wikipedia deems harmful to someone will also be censored, resulting in removal of
many valuable information you would want to find in an encyclopedia.

¢ Political correctness is based on censorship, a great part of it is retroactive censorship and rewriting of
old works, for example some populist German book publisher refused to publish the Winnetou books,
a classic and important work of art, under claim of "racism"; similarly iconic books like Ten Little
Niggers by Agatha Christie had to be crippled and renamed; the famous series Futurama is commonly
censored by broadcasters (deleting words like Jesus, bastard, ...). The examples here are countless.
This is used for political censorship, for example on the Internet it's extremely hard to publish any
opinions not aligned with the currently ruling pseudoleftist ideology because terms of service of any
social media platform or even website hosting company have to forbid so called "hate speech" which
just means anything not aligned with the ideology.

¢ Pseudocommunist regimes of the 20th century practiced very strong censorship, e.g. in
Czechoslovakia all public art such as music and plays had to pass an ideological review before being
approved for performance.

¢ Child pornography is nowadays unfortunately completely censored, it is mandatory to be censored in
most first world countries

¢ Mass shootings come with attempts by governments at censoring the messages sent by the attacker,
sometimes even their names; one example for all can be the 2019 Christchurch shooting by Brenton
Tarrant whose manifesto, called The Great Replacement (downloadable e.g. at Anna's Archive), was
being forced down off of the Internet following the attack.

¢ In mainstream "science" censorship is nowadays part of standard publishing process, known under
the euphemism of peer review.

¢ Google's search engine has very strong censorship and political bias built-in, it's done mostly by
downranking targeted sites to make them practically unfindable, in some cases downright blocking
sites altogether. Some of the affected sites include Encyclopedia Dramatica, Metapedia, Infogalactic,
8kun, Sanctioned Suicide and many others.

¢ Censorship enjoys big popularity on the soynet, e.g. there is the infamous fediblock list of blocked
fediverse instances.

¢ China very intensively applies censorship to the Internet, especially in regards to the country's official
ideology and history, using the so called great firewall. China also does weird funny kinds of
censorship like removing bones from video games. Why do they do it? No one knows. Germany
similarly for some stupid reasons replaces blood in video games with green liquid, ruining the games.

¢ North Korea is probably the most isolated country in the world, it prevents essentially any information
from behind its borders from reaching its citizens, it even completely blocks the Internet and rather
established its own intranet (Kwangmyonag).

¢ Japanese hilariously blur genitalia in porn.

¢ Any so called "private information" of individuals is nowadays in many countries required to be
censored from the public.

¢ In 2007 there was an infamous attempt at censoring the AACS DVD encryption keys
(09F911029D74E35BD84156C5635688C0) which allowed to circumvent DRM.

¢ Nazis publicly burned books they deemed harmful (e.g. for having been written by Jews) -- though this
was more of a public theatre, it was also indeed partially an act of censorship.

Censorship LRS Wiki 132/895

¢ Circa 2019 reddit, until then quite highly free speech website, completely turned around and launched
a censorship tsunami that destroyed thousands of communities, all just to make the site more
advertiser friendly.

See Also

o free speech

chaos

Chaos

In mathematics chaos is a phenomenon that makes it extremely difficult to predict, even approximately, the
outcome of some process even if we completely know how the process works and what state it starts in. In
more technical terms chaos is a property of a nonlinear deterministic system in which even a very small
change in input creates a great change in the output, i.e. the system is very sensitive to initial conditions.
Chaos is a topic studied by the field called chaos theory and is important in all science. In computer science
it is important for example for the generation of pseudorandom numbers or in cryptography. Every
programmer should be familiar with the existence of chaotic behavior because in mathematics
(programming) it emerges very often, it may pose a problem but, of course, it may be taken advantage of as
well.

Perhaps the most important point is that a chaotic system is difficult to predict NOT because of randomness,
lack of information about it or even its incomprehensible complexity (many chaotic systems are defined
extremely simply), but because of its inherent structure that greatly amplifies any slight nudge to the system
and gives any such nudge a great significance. This may be caused by things such as feedback loops and
domino effects. Generally we describe this behavior as so called butterfly effect -- we liken this to the fact
that a butterfly flapping its wings somewhere in a forest can trigger a sequence of events that may lead to
causing a tornado in a distant city a few days later.

Examples of chaotic systems are the double pendulum, weather (which is why it is so difficult to predict it),
dice roll, rule 30 cellular automaton, logistic map, Baker's map, gravitational interaction of N _bodies or
Lorenz differential equations. Langton's ant sometimes behaves chaotically. Another example may be e.g. a
billiard table with multiple balls: if we hit one of the balls with enough strength, it'll shoot and bounce off of
walls and other balls, setting them into motion and so on until all balls come to stop in a specific position. If
we hit the ball with exactly the same strength but from an angle differing just by 1 degree, the final position
would probably end up being completely different. Despite the system being deterministic (governed by
exact and predictable laws of motion, neglecting things like quantum physics) a slight difference in input
causes a great different in output.

A simple example of a chaotic equation is also the function sin(1/x) for x near 0 where it oscillates so quickly
that just a tiny shift along the x axis drastically changes the result. See how unpredictable results a variant of
the function can give:

x 1000 * sin(10"9 / x)
4.001 455,...
4.002 818,...
4.003 -511,...
4.004 -974,...

4.005 -335,...

Logistic map is often given as the typical example of a chaotic system. It is the series defined as x[n + 1] =
r* x[n] * (1 - x[n]), which for some constant r (interpreted as speed of population increase) says how a
population evolves from some starting value x[0]; for low x[n] the population will be increasing proportionally
by the rate of r but once it reaches a higher value, it will start decreasing (as if by starvation), resulting in
oscillation. Now if we only start to be interested in changing the value r and then seeing at what value the
population stabilizes (for a big n), we make some interesting discoveries. This is best seen by plotting the

Chaos LRS Wiki 133/895

stable values (let's say x[1000]) depending on r. For r approximately between 3.57 and 4 we start to see a
chaotic behavior, with results greatly depending on the initial population value (x[0]). This demonstrates
chaotic behavior.

The following is a fixed point C implementation of the above:

#include <stdio.h>

#define FP_UNIT 256

#define DOWNSCALE X 4

#define DOWNSCALE_ Y 25

#define LINE_LENGTH (FP_UNIT / DOWNSCALE_X)
#define GENERATIONS 1000

char stablePoints[LINE LENGTH + 1];

int main(void)

{

}

stablePoints[LINE LENGTH] = 0; // string terminator

for (int i = ©; i <= FP_UNIT * 4; i += DOWNSCALE Y) // for different rs

{
for (int j = 0; j < LINE_LENGTH; ++j)
stablePoints[j] = ' ';
for (int j = 0; j < FP_UNIT; ++j) // for different starting population sizes
{
int population = j;
for (int k = 0; k < GENERATIONS; ++k)
population = (i * population * (FP_UNIT - population)) / (FP_UNIT * FP_UNIT);
population /= DOWNSCALE_X;
if (population >= 0 && population < LINE LENGTH)
stablePoints[population] = '*';
}
printf("%.3f| %s\n",i / ((float) FP_UNIT),stablePoints);
}
return 0;

It outputs the following:

Chaos

NNNHRHRPRHRRPHREPHEOOOOOOOO®®®

.000 |
.098|
.195|
.293|
.391|
.488|
.586 |
.684|
.781|
.879]
.977|
.367|
465 |
.562|
.660 |
.758|
.855|
.953]
.051]
.148|
.246|

* K K X X X X X X X X

*x

kx

* K K X X X X X X ¥
*

LRS Wiki 134/895

.344|
441
.539|
.637]
.734|
.832|
.930|
.027 |
.125|
.223|
.320]
.418)|
.516|
.613]
711
.809|
.906 |

*%
ok ok Kok ok K K
* *
* * *
* *%
*% * * %
k% ok ok * % * * Kok Kok
kxokk kkk ok ok k¥ k% * kokok ok ok Kk
* % * % k% kokkkk K *%
* k% ok X * * ok * ok kokk %
* * * %k * * * * * kxok %

¥ X K K X K K K X X X X X X X X X
*

WWWWWWWWWWNNNNNNN

Vertical axis is the r parameter, i.e. the population growth speed. Horizontal axis shows stable population
size after 1000 generations, starting with different initial population sizes. We can see that up until about r =
3 the stable population size always stabilizes at around the same size, which gradually increases with r.
However then the line splits and after around r = 3.56 the stable population sizes are quite spread out and
unpredictable, greatly depending on the initial population size. Pure CHAOS!

charity_sex

Charity Sex

We define charity sex as sex selflessly provided for free just to make the other one happy -- this would
mostly be done by a women as women decide if sex happens or not, but in rare cases Charity sex can also
be provided by an extremely handsome man. If a girl goes around providing a lot of charity sex to guys that
are desperate for getting laid (such as incels), she might be called a charity whore -- this is a greatly
admirable activity, like someone going around buying food for the homeless. If you are girl please do this.

chasm_the_rift

Chasm: The Rift

Poor man's Quake.

Chasm: The Rift is a 1997 FPS game, developed basically by a few Ukrainian basement nerds to be a cheaper
version of Quake, which was of course completely overshadowed by this giant and therefore isn't much
known but which is nevertheless quite technically impressive upon closer inspection.

{ TODO: do more research about the engine, attempt to translate the Russian YT video, reach the devs.
~drummyfish }

The game requirements were a 486 CPU (which reached 100 MHz at most), 16 MB RAM and 75 MB storage
space.

The engine is possibly the most interesting part of the game as it used software rendering that combined a
"2.5D" level rendering and "true 3D" polygonal models for things like level decorations, enemies and weapon
view model. Not much is known about the internals as the whole code is proprietary and "closed source", we
may only inspect it visually and through reverse engineering. To us it is not known if environment rendering
uses BSP rendering, portal rendering, raycasting, something similar or whether it just utilizes its 3D model
renderer for levels too, however there are some 2.5D simplifications going on as levels are defined as 2D (no
room-above-room) and looking up/down is faked (even for the environment inserted "true 3D" models, the
up/down look is limited to just a small offset probably to mask the "2.5D" nature of the engine). In fact it isn't
even possible to have different height levels of floor, all levels just have the same floor height (ceiling height
can be set though)! This is masked a bit by using 3D models onto which it is indeed possible to jump. The
game's level editor shows levels use a square grid on which however it is possible to place even non-90

Chasm: The Rift LRS Wiki 135/895

degree walls. There is also a lightmap lighting system present allowing dynamic lights -- a pretty advanced
feature, though the lightmap only seems to be 2D, just as the level itself. Destructible environment is also
faked in some levels by having a 3D model behaving like part of a wall, then disappearing when destroyed.

Apart from the engine the game was also nice for being quite KISS, taking similar approach to e.g. Anarch by
using very minimal menu and controls: for example there is no door opening or "use" button, items just
activate by proximity, weapon switching is also performed by single button. This is actually quite nice as
setting up controls and learning them is many times something that just puts you off.

See Also

e Gloom

cheating

Cheating

Cheating means circumventing or downright violating rules, usually while trying to keep such behavior
secret. You can cheat on your partner, in games, in business and so forth, however despite cheating seeming
like purely immoral behavior at first glance, it may be relatively harmless or even completely moral, for
instance in computer graphics we occasionally "cheat" our sense of sight and fake certain visual phenomena
which leads to efficient rendering algorithms. In capitalism cheating is demonized and people are
brainwashed to partake in cheater witch hunts as part of fear culture, arbitrary drama in fight for
attention, trying to monopolize game platforms with bloat monopoly "anti cheat" systems etc. These so
called "anti cheat" systems introduce unimaginable bloat and bullshit and provide excuse for things like
spying (e.g. monitoring OS processes) and proprietary technology (so that "cheaters can't study the
system to trick it") creeping into the world of free software.

The truth is that cheating is only an issue in a shitty society that is driven by competition. Indeed, in
such society there is a huge motivation for cheating (sometimes literally physical survival) as well as
potentially disastrous consequences of it. Under the tyranny of capitalism we are led to worship heroes and
high achievers and everyone gets pissed when we get fooled. Corporations go "OH NOES our multi billion
dollar entertainment industry is going to go bankrupt if consoomers get annoyed by cheaters! People are
gonna lose their bullshit jobs! Someone is going to get money he doesn't deserve! Our customers may get
butthurt!!!" (as if corporations themselves weren't basically just stealing money and raping people lol). So
they start a huge brainwashing propaganda campaign, a cheater witch hunt. States do the same,
communities do the same, everyone wants to stone cheaters to death but at the same time the society
pressures all of us to compete to death with others or else we'll starve. We reward winners and torture the
losers, then bash people who try to win -- and no, many times there is no other choice than to cheat, the top
of any competition is littered with cheaters, most just don't get caught, so in about 99% of cases the only
way to the top is to cheat and try to not get caught, just to have a shot at winning against others. It is proven
time after time, legit looking people in the top leagues of sports, business, science and other areas are
constantly being revealed as cheaters, usually by pure accident (i.e. the number of actual cheater is MANY
times higher). Take a look for instance at the Trackmania cheating scandal in which after someone invented
a replay analysis tool he revealed that a great number or top level players were just cheaters, including
possibly the GOAT of Trackmania Riolu (who just ragequit and never showed again lol). Of course famous
cases like Neil Armstrong don't even have to be mentioned. { | just randomly found out that in the world of
Pokemon tournaments cheating at top level also showed to be a huge issue lol. ~drummyfish } Cheater
detection systems are (and always will be) imperfect and try to minimize false positives, so only the cheaters
who REPEATEDLY make MANY very OBVIOUS mistakes get caught, the smart cheaters stay and take the top
places in the competitive system, just as surely as natural selection leads to the evolution of organisms that
best adapt to the environment. Even if perfect cheat-detection systems existed, the problem would just shift
from cheating to immoral unsportmanship, i.e. abuse of rules that's technically not cheating but effectively
presents the same kind of problems. How to solve this enormously disgusting mess? We simply have to stop
desperately holding to the system itself, we have to ditch it.

In a good society, such as LRS, cheating is not an issue at all, there's no incentive for it (people don't have to
prove their worth by their skills, there are no money, people don't worship heroes, ...) and there are no
negative consequences of cheating worse than someone ragequitting an online game -- which really isn't an

Cheating LRS Wiki 136/895

issue of cheating anyway but simply a consequence of unskilled player facing a skilled one (whether the
pro's skill is natural or artificial doesn't play a role, the nub will ragequit anyway). In a good society cheating
can become a mild annoyance at worst, and it can really be a positive thing, it can be fun -- seeing for
example a skilled pro face and potentially even beat a cheater is a very interesting thing. If someone wants
to win by cheating, why not let him? Valid answers to this can only be given in the context of a shit society
that creates cults of personality out of winners etc. In a good society choosing to cheat in a game is as if
someone chooses to fly to the top of a mountain by helicopter rather than climbing it -- the choice is
everyone's to make.

The fact that cheating isn't after all such an issue is supported by the hilariously vastly different double
standards applied e.g. by chess platforms in this matter, on one hand they state in their TOS they have
absolutely 0% tolerance of any kind of cheating/assistance and will lifeban players for the slightest suspicion
of cheating yelling "WE HAVE TO EIGHT CHEATING", on the other hand they allow streamers literally cheat on
a daily basis on live stream where everyone is seeing it, of course because streamers bring them money --
ALL top chess streamers (chessbrah, Nakamura, ...), including the world champion Magnus Carlsen himself,
have videos of themselves getting advice on moves from the chat or even from high level players present
during the stream, Magnus Carlsen is filmed taking over his friend's low rated account and winning a game
which is the same as if the friend literally just used an engine to win the game, and Magnus is also filmed
getting an advice from a top grandmaster on a critical move in a tournament that won him the game and
granted him a FINANCIAL PRIZE. World chess champion is literally filmed winning money by cheating
and no one cares because it was done as part of a highly lucrative stream "in a fun/friendly mood".
Chessbrah streams ordinarily consist of many viewers in the room just giving advice on moves to the one
who is currently playing, of course they censor all comments that try to bring up the fact that this is 100%
cheating directly violating the platform's TOS. People literally have no brains, they only freak out about
cheating when they're told to by the industry, when cheating is good for business people are told to shut up
because it's okay and indeed they just shut up and keep consuming.

chess

Chess

Chess (from Persian shah, king) is a very old two-player board game, perhaps most famous and popular
among all board games in history. In video game terms we could call it a turn-based strategy, in
mathematical terms it's a zero sum, complete information game with no element of randomness, that
simulates a battle of two armies on an 8x8 board with different battle pieces, also called chessmen or just
men (also stones, pieces or juicers). Chess is also called the King's Game, it has a world-wide competitive
community and is considered an intellectual sport but it's also been a topic of research and programming
(many chess engines, Als and frontends are being actively developed). Chess is similar to games such shoqi
("Japanese chess"), xiangdi ("Chinese chess") and checkers. As the estimated number of chess games is
bigger than googol, it is unlikely to ever be solved; though the complexity of the game in sheer number of
possibilities is astronomical, among its shogi, go and xiangqi cousins it is actually considered one of the
"simplest" (the board is relatively small and the game tends to simplify as it goes on as there are no rules to
get men back to the game etc.).

{ There is a nice black and white indie movie called Computer Chess about chess programmers of the 1980s,
it's pretty good, very oldschool, starring real programmers and chess players, check it out. ~drummyfish }

Drummyfish has created a suckless/LRS chess library smallchesslib which includes a simple engine called
smolchess (and also a small chess game in SAF with said library).

At LRS we consider chess to be one of the best games for the following reasons:

e |t is just a greatly interesting and deep game in which luck plays minimal role.

e It is greatly suckless, the rules are very simple, it can be implemented on simple 8bit computers.
Of course the game doesn't even require a computer, just a board and a few men -- chess masters
don't even need a board to play (they can completely visualize the games in memory). In the end one
can in theory just play against himself in his head, achieving the ultimate freedom: the only
dependency of the game is one's brain, i.e. it becomes a brain software. Chess is extremely
inexpensive, doesn't discriminate against poor people and will survive even the most extreme

Chess LRS Wiki 137/895

technological collapse.

* No one owns chess, the game is hundreds of years old and many books about it are also already in
the public domain. It is extremely free.

¢ |t is a basis for other derived games, for example many different chess variants or chess puzzles
which can be considered a "singleplayer chess game".

e It is a source of many interesting mathematical and programming challenges.

¢ [t seems to strike the right balance of simplicity and complexity, it is very simple but not so trivial as
to be ever solved in a foreseeable future.

Many however see go as yet a more beautiful game: a more minimal, yet more difficult one, with a
completely unique experience.

Where to play chess online? There exist many servers such as https://chess.com or https://chess24.com --
however these ones are proprietary, so don't use them. For us a possible one is Lichess (libre chess) at
https://lichess.org which not only EQSS, but is also gratis (it also allows users to run bots under special
accounts which is an amazing way of testing engines against people and other engines), however it requires
JavaScript. Another server, a more suckless one, is Free Internet Chess Server (FICS) at
https://www.freechess.org/ -- on this one you can play through telnet (telnet freechess.org 5000) or with
graphical clients like pychess. Online servers usually rate players with Elo/Glicko just like FIDE, sometimes
there are computer opponents available, chess puzzles, variants, analysis tools etc.

Chess as a game is not and cannot be copyrighted, but can chess games (moves played in a match) be
copyrighted? Thankfully there is a pretty strong consensus and precedence that say this is not the case,
even though capital worshippers try to play the intellectual property card from time to time (e.g. 2016
tournament organizers tried to stop chess websites from broadcasting the match moves under "trade secret
protection”, unsuccessfully).

Chess and |Q/intelligence: there is a debate about how much of a weight general vs specialized
intelligence, 1Q, memory and pure practice have in becoming good at chess. It's not clear at all, everyone's
opinion differs. A popular formula states that highest achievable Elo = 1000 + 10 * IQ, though its accuracy
and validity are of course highly questionable. All in all this is probably very similar to language learning:
obviously some kind of intelligence/talent is needed to excel, however chess is extremely similar to any other
sport in that putting HUGE amounts of time and effort into practice (preferably from young age) is what
really makes you good -- without practice even the biggest genius in the world will be easily beaten by a
casual chess amateur, and even a relatively dumb man can learn chess very well under the right conditions
(just like any dumbass can learn at least one language well); many highest level chess players admit they
sucked at math and hated it. As one starts playing chess, he seems to more and more discover that it's really
all about studying and practice more than anything else, at least up until the highest master levels where the
genius gives a player the tiny nudge needed for the win -- at the grandmaster level intelligence seems to
start to matter more. Intelligence is perhaps more of an accelerator of learning, not any hard limit on what
can be achieved, however also just having fun and liking chess (which may be just given by upbringing etc.)
may have similar accelerating effects on learning. Really the very basics can be learned by literally ANYONE,
then it's just about learning TONS of concepts and principles (and automatizing them), be it tactical patterns
(forks, pins, double check, discovery checks, sacrifices, smothered mates, ...), good habits, positional
principles (pawn structure, king safety, square control, piece activity, ...), opening theory (this alone takes
many years and can never end), endgame and mating patterns, time management etcetc.

Fun fact: chess used to be played over telegraph, first such game took place probably in 1844.

How to play chess with yourself? If you have no computer or humans to play against, you may try
playing against yourself, however playing a single game against yourself doesn't really work, you know what
the opponent is trying to do -- not that it's not interesting, but it's more of a search for general strategies in
specific situations rather than actually playing a game. One way around this could be to play many games at
once (you can use multiple boards but also just noting the positions on paper as you probably won't be able
to set up 100 boards); every day you can make one move in some selected games -- randomize the order
and games you play e.g. with dice rolls. The humber of games along with the randomized order should make
it difficult for you to remember what the opponent (you) was thinking on his turn. Of course you can record
the games by noting the moves, but you may want to cover the moves (in which case you'll have to be
keeping the whole positions noted) until the game is finished, so that you can't cheat by looking at the game
history while playing. If this method doesn't work for you because you can keep up with all the games, at

Chess LRS Wiki 138/895

least you know got real good at chess :) { This is an idea | just got, I'm leaving it here as a note, haven't tried
it yet. ~drummyfish }

Chess In General

Chess evolved from ancient board games in India (most notably Chaturanga) in about 6th century -- some
sources say that in chess predecessor games dice was used to determine which man a player was allowed to
move but that once dice were banned because of hazard games, we got the variant without any element of
chance. Nowadays the game is internationally governed by FIDE which has taken the on role of an authority
that defines the official rules: FIDE rules are considered to be the standard chess rules. FIDE also organizes
tournaments, promotes the game and keeps a list of registered players whose performance it rates with so
called Elo system --3[] based on the performance it also grants titles such as Grandmaster (GM, strongest),
Internation Master (IM, second strongest) or Candidate Master (CM). A game of chess is so interesting in
itself that chess is usually not played for money like many other games (poker, backgammon, ...).

The mastery of chess is often divided into two main areas (it is also common to divide strong players into
these two categories depending on where their main strength lies):

¢ positional play: Long term, big picture patterns that offer many advantages and opportunities for
playing good moves, trying to get a "good position" with men on strong squares, controlling key parts
of the board, putting pressure on enemy, ensuring safety of own king etc.

¢ tactical play: Short term, quick action, tricks and calculation skills that win advantages, often
material, with tools like forks, pins, discovery checks, sacrifices etc.

Of course this is not the only possible division, another one may be for example offensive vs defensive play
etc., but generally chess revolves around position and tactics.

A single game of chess is seen as consisting of three stages: opening (starting, theoretical "book" moves,
developing men), middlegame (seen as the pure core of the game) and endgame (ending in which only
relatively few men remain on the board). There is no clear border between these stages and they are
sometimes defined differently, however each stage plays a bit differently and may require different skills and
strategies; for example in the endgame king becomes an active man while in the opening and middlegame
he tries to stay hidden and safe.

The study of chess openings is called opening theory or just theory. Playing the opening stage is special by
being based on memorization of this theory, i.e. hundreds or even thousands of existing opening lines that
have been studied and analyzed by computers, rather than by performing mental calculation (logical
"thinking ahead" present in middlegame and endgame). Some see this as weakness of chess that makes
players spend extreme energy on pure memorization. One of the best and most famous players, Bobby
Fischer, was of this opinion and has created a chess variant with randomized starting position that prevents
such memorization, so called chess 960.

Elo rating is a mathematical system of numerically rating the performance of players (it is used in many
sports, not just chess). Given two players with Elo rating it is possible to compute the probability of the
game's outcome (e.g. white has 70% chance of winning etc.). The FIDE set the parameters so that the rating
is roughly this: < 1000: beginner, 1000-2000: intermediate, 2000-3000: master. More advanced systems
have also been created, namely the Glicko system.

The rules of chess are quite simple (easy to learn, hard to master) and can be found anywhere on the
Internet. In short, the game is played on a 8x8 board by two players: one with white men, one with black
(LOL IT'S RACIST :D). Each man has a way of moving and capturing (eliminating) enemy men, for example
bishops move diagonally while pawns move one square forward and take diagonally. The goal is to
checkmate the opponent's king, i.e. make the king attacked by a man while giving him no way to escape
this attack. There are also lesser known rules that noobs often miss and ignore, e.g. so called en-passant or
the 50 move rule that declares a draw if there has been no significant move for 50 moves.

At the competitive level clock (so called time control) is used to give each player a limited time for making
moves: with unlimited move time games would be painfully long and more a test of patience than skill. Clock
can also nicely help balance unequal opponent by giving the stronger player less time to move. Based on the
amount of time to move there exist several formats, most notably correspondence (slowest, days for a

Chess LRS Wiki 139/895

move), classical (slow, hours per game), rapid (faster, tens of minutes per game), blitz (fast, a few
seconds per move) and bullet (fastest, units of seconds per move).

Currently the best player in the world is pretty clearly Magnus Carlsen from Norway with Elo rating 2800+.

During covid chess has experienced a small boom among normies and YouTube chess channels have gained
considerable popularity. This gave rise to memes such as the bong cloud opening popularized by a top player
and streamer Hikaru Nakamura; the bong cloud is an intentionally shitty opening that's supposed to taunt
the opponent (it's been even played in serious tournaments lol).

White is generally seen as having a slight advantage over black (just like in real life lol). It is because
he always has the first move -- statistics also seems to support this as white on average wins a little more
often. This doesn't play such as big role in beginner and intermediate games but starts to become apparent
in master games. How big the advantages is is a matter of ongoing debate, most people are of the opinion
there exists a slight advantage for the white (with imperfect play, i.e. that white plays easier, tolerates
slightly less accurate play), though most experts think chess is a draw with perfect play (pro players can
usually quite safely play for a draw and secure it if they don't intend to win; world championships mostly
consist of drawn games as really one player has to make a mistake to allow the other one to win). Minority of
experts think white has theoretical forced win. Probably only very tiny minority of people think white doesn't
have any advantage. Some people argue black has some advantages over white, as it's true that sometimes
the obligation to make a move may be a disadvantage. Probably no one thinks black has a forced win,
though that's not disproved yet so maybe someone actually believes it.

On perfect play: as stated, chess is unlikely to be ever solved so it is unknown if chess is a theoretical
forced draw or forced win for white (or even win for black), however many simplified endgames and some
simpler chess variants have already been solved. Even if chess was ever solved, it is important to realize one
thing: perfect play may be unsuitable for humans and so even if chess was ever solved, it might have
no significant effect on the game played by humans. Imagine the following: we have a chess position in
which we are deciding between move A and move B. We know that playing A leads to a very good position in
which white has great advantage and easy play (many obvious good moves), however if black plays perfectly
he can secure a draw here. We also know that if we play B and then play perfectly for the next 100 moves,
we will win with mathematical certainty, but if we make just one incorrect move during those 100 moves, we
will get to a decisively losing position. While computer will play move B here because it is sure it can play
perfectly, it is probably better to play A for human because human is very likely to make mistakes (even a
master). For this reason humans may willingly choose to play mathematically worse moves -- it is because a
slightly worse move may lead to a safer and more comfortable play for a human.

Fun fact: there seem to be almost no black people in chess :D the strongest one seems to be Pontus
Carlsson which rates number 1618 in the world; even women seem to be much better at chess than black
people. But how about black women? LMAQ, it seems like there haven't even been any black female masters
:'D The web is BLURRY on these facts, but there seems to be a huge excitement about one black female,
called Rochelle Ballantyne, who at nearly 30 years old has been sweating for a decade to reach the lowest
master rank (the one which the nasty oppressive white boys get at like 10 years old) and MAYBE SHE'LL DO
IT, she seems to have with all her effort and support of the whole Earth overcome the 2000 rating, something
that thousands of amateurs on the net just causally do every day without even trying too much. But of
course, it's cause of the white male oppression =3 lel

Chess And Computers
{ This is an absolutely amazing video about weird chess algorithms :) ~drummyfish }

Chess is a big topic in computer science and programming, computers not only help people play chess, train
their skills, analyze positions and perform research of games, but they also allow mathematical analysis of
chess as such and provide a platform for things such as artificial intelligence.

Chess software is usually separated to libraries, chess engines and frontends. Chess engine is typically a
CLI program capable of playing chess but also doing other things such as evaluating arbitrary position,
hinting best moves, saving and loading games etc. -- commonly the engine has some kind of custom CLI
interface (flags, interactive commands it understands, ...) plus a support of some standardized text
communication protocol, most notably XBoard (older one, more KISS) and UCI (newer, more bloated). There

Chess LRS Wiki 140/895

is also typically support for standardized formats such as FEN (way of encoding a chess position as a text
string), PGN (way of encoding games as text strings) etc. Frontends on the other hand are usually GUI
programs (in this case also called boards) that help people interact with the underlying engine, however
there may also be similar non-GUI programs of this type, e.g. those that automatically run tournaments of
multiple engines.

Computers have already surpassed the best humans in their playing strength (we can't exactly compute an
engine's Elo as it depends on hardware used, but generally the strongest would rate high above 3000 FIDE).
As of 2023 the strongest chess engine is widely agreed to be the FOSS engine Stockfish, with other strong
engines being e.g. Leela Chess Zero (also FOSS), AlphaZero (proprietary by Google) or Komodo Dragon
(proprietary). GNU Chess is a pretty strong free software engine by GNU. There are world championships for
chess engines such as the Top Chess Engine Championship or World Computer Chess Championship. CCRL is
a list of chess engines along with their Elo ratings deduced from tournaments they run. Despite the immense
strength of modern engines, there are still some specific artificial situations in which a human beats the
computer (shown e.qg. in this video); this probably won't last long though.

The first chess computer that beat the world champion (at the time Gary Kasparov) was famously Deep Blue
in 1997. Alan Turing himself has written a chess playing algorithm but at his time there were no computers
to run it, so he executed it by hand -- nowadays the algorithm has been implemented on computers (there
are bots playing this algorithm e.g. on lichess).

Playing strength is not the only possible measure of chess engine quality, of course -- for example there are
people who try to make the smallest chess programs (see countercomplex and golfing). As of 2022 the
leading programmer of smallest chess programs seems to be A[Jscar Toledo G.
(https://nanochess.org/chess.html). Unfortunately his programs are proprietary, even though their source
code is public. The programs include Toledo Atomchess (392 x86 instructions), Toledo Nanochess (world's
smallest C chess program, 1257 non-blank C characters) and Toledo Javascript chess (world's smallest
Javascript chess program). He won the |[OCCC. Another small chess program is micro-Max by H. G. Muller
(https://home.hccnet.nl/h.g.muller/max-src2.html, 1433 C characters, Toledo claims it is weaker than his
program). Other engines try to be strong while imitating human play (making human moves, even mistakes),
most notably Maia which trains several neural networks that play like different rated human players.

{ Nanochess is actually pretty strong, in my testing it easily beat smallchesslib Q Q ~drummyfish }

Programming Chess

NOTE: our smallchesslib/smolchess engine is very simple, educational and can hopefully serve you as a nice
study tool to start with :)

There is also a great online wiki focused on programming chess engines:
https://www.chessprogramming.org.

Programming chess is a fun and enriching experience and is therefore recommended as a good exercise.
There is nothing more satisfying than writing a custom chess engine and then watching it play on its own.

The core of chess programming is writing the Al. Everything else, i.e. implementing the rules, communication
protocols etc., is pretty straightforward (but still a good programming exercise). Nevertheless, as the chess
programming wiki stresses, one has to pay a great attention to eliminating as many bugs as possible; really,
the importance of writing automatic tests can't be stressed enough as debugging the Al will be hard enough
and can become unmanageable with small bugs creeping in. Though has to go into choosing right data
structures so as to allow nice gptimizations, for example board representation plays an important role (two
main approaches are a 64x64 2D array holding each square's piece vs keeping a list of pieces, each one
recording its position).

The Al itself works traditionally on the following principle: firstly we implement so called static evaluation
function -- a function that takes a chess position and outputs its evaluation number which says how good
the position is for white vs black (positive number favoring white, negative black, zero meaning equal, units
usually being in pawns, i.e. for example -3.5 means black has an advantage equivalent to having extra 3 and
a half pawns; to avoid fractions we sometimes use centipawns, i.e. rather -350). This function considers a
number of factors such as total material of both players, pawn structure, king safety, men mobility and so on.

Chess LRS Wiki 141/895

Traditionally this function has been hand-written, nowadays it is being replaced by a learned neural network
(NNUE) which showed to give superior results (e.g. Stockfish still offers both options); for starters you
probably want to write a simple evaluation function manually.

Note: if you could make a perfect evaluation function that would completely accurately state given position's
true evaluation (considering all possible combinations of moves until the end of game), you'd basically be
done right there as your Al could just always make a move that would lead to position which your evaluation
function rated best, which would lead to perfect play. Though neural networks got a lot closer to this ideal
than we once were, as far as we can foresee ANY evaluation function will always be just an approximation,
an estimation, heuristic, many times far away from perfect evaluation, so we cannot stop at this. We have to
program yet something more.

So secondly we need to implement a so called search algorithm -- typically some modification of minimax
algorithm, e.g. with alpha-beta pruning -- that recursively searches the game tree and looks for a move that
will lead to the best result in the future, i.e. to position for which the evaluation function gives the best value.
This basic principle, especially the search part, can get very complex as there are many possible weaknesses
and optimizations. Note now that this search kind of improves on the basic static evaluation function by
making it dynamic and so increases its accuracy greatly (of course for the price of CPU time spent on
searching).

Exhaustively searching the tree to great depths is not possible even with most powerful hardware due to
astronomical numbers of possible move combinations, so the engine has to limit the depth quite greatly and
use various hacks, approximations, heuristics etc.. Normally it will search all moves to a small depth (e.g. 2
or 3 half moves or plys) and then extend the search for interesting moves such as exchanges or checks.
Maybe the greatest danger of searching algorithms is so called horizon effect which has to be addressed
somehow (e.g. by detecting quiet positions, so called quiescence). If not addressed, the horizon effect will
make an engine misevaluate certain moves by stopping the evaluation at certain depth even if the played
out situation would continue and lead to a vastly different result (imagine e.g. a queen taking a pawn which
is guarded by another pawn; if the engine stops evaluating after the pawn take, it will think it's a won pawn,
when in fact it's a lost queen). There are also many techniques for reducing the number of searched tree
nodes and speeding up the search, for example pruning methods such as alpha-beta (which subsequently
works best with correctly ordering moves to search), or transposition tables (remembering already
evaluated position so that they don't have to be evaluated again when encountered by a different path in the
tree).

Alternative approaches: most engines work as described above (search plus evaluation function) with
some minor or bigger modifications. The simplest possible stupid Al can just make random moves, which will
of course be an extremely weak opponent (though even weaker can be made, but these will actually require
more complex code as to play worse than random moves requires some understanding and searching for the
worst moves) -- one might perhaps try to just program a few simple rules to make it a bit less stupid and
possibly a simple training opponent for complete beginners: the Al may for example pick a few "good
looking" candidate moves that are "usually OK" (pushing a pawn, taking a higher value piece, castling, ...)
and aren't a complete insanity, then pick one at random only from those (this randomness can further be
improved and gradually controlled by scoring the moves somehow and adding a more or less random value
from some range to each score, then picking the moves with highest score). One could also try to just
program in a few generic rules such as: checkmate if you can, otherwise take an unprotected piece,
otherwise protect your own unprotected piece etc. -- this could produce some beginner level bot. Another
idea might be a "Chinese room" bot that doesn't really understand chess but has a huge database of games
(which it may even be fetching from some Internet database) and then just looking up what moves good
players make in positions that arise on the board, however a database of all positions will never exist, so in
case the position is not found there has to be some fallback (e.g. play random move, or somehow find the
"most similar position" and use that, ...). As another approach one may try to use some non neural
network machine learning, for example genetic programming, to train the evaluation function, which will
then be used in the tree search. Another idea that's being tried (e.g. in the Maia engine) is pure neural net
Al (or another form of machine learning) which doesn't use any tree search -- not using search at all has long
been thought to be impossible as analyzing a chess position completely statically without any "looking
ahead" is extremely difficult, however new neural networks have shown to be extremely good at this kind of
thing and pure NN Als can now play on a master level (a human grandmaster playing ultra bullet is also just
a no-calculation, pure pattern recognition play). Next, Monte Carlo tree search (MCTS) is an alternative
way of searching the game tree which may even work without any evaluation function: in it one makes many

Chess LRS Wiki 142/895

random playouts (complete games until the end making only random moves) for each checked move and
based on the number of wins/losses/draws in those playouts statistically a value is assigned to the move --
the idea is that a move that most often leads to a win is likely the best. Another Monte Carlo approach may
just make random playouts, stop at random depth and then use normal static evaluation function (horizon
effect is a danger but hopefully its significance should get minimized in the averaging). However MCTS is
pretty tricky to do well. MCTS is used e.g. in Komodo Dragon, the engine that's currently among the best.
Another approach may lie in somehow using several methods and heuristics to vote on which move would be
best.

Many other aspects come into the Al design such as opening books (databases of best opening moves),
endgame tablebases (precomputed databases of winning moves in simple endgames), clock management,
pondering (thinking on opponent's move), learning from played games etc. For details see the above linked
chess programming wiki.

Notable Chess Engines/Computers/Entities
See also ratings of computer engines at https://www.computerchess.org.uk/ccrl/4040/.
Here are some notable chess engines/computers/entities, as of 2024

¢ Stockfish (SF): FOSS engine (written in C++), without any doubt the strongest chess engine
that's been reliably winning all the computer tournaments for years now; its strength is far beyond
any human, even if run on quite a weak device -- it actually caused some trouble because it's
extremely easy to just download onto a cellphone and cheat even in OTB tournaments. Currently the
engine is using a neural network for evaluating positions but still also uses the tree search algorithm
(a greatly optimized one so that it searches gigantic numbers of positions per second). Important part
of the development is so called Fishtest, a distributed framework for testing and improving the
engine's performance, it's one of the reasons why it good so strong. Stockfish's current CCRL Elo
rating is 3639 (warning: this is incomparable to human Elos).

e Magnus Carlsen: Human, most likely the strongest player ever, has been quite comfortably winning
every tournament he entered including the world championship until he quit, basically because he got
"bored". His top FIDE Elo was 2882.

e Komodo Dragon: Proprietary, currently seems to be the second strongest engine, it's main feature is
[Monte Carlo] ("randomized") search algorithm. Current CCRL Elo is 3624.

e Leela Chess Zero (Ic0): FOSS engine (written in C++), among top strongest engines (currently top
50 on CCRL), it is interesting mainly for how it works: it is a neural network engine that's completely
self-taught from the ground up, i.e. it didn't learn chess by watching anyone else play, it was only
allowed to learn by playing against itself. Current CCRL Elo is 3441.

e Deep Blue: A historically famous supercomputer, the first one to have beaten the human world chess
champion in 1997.

* GNU chess Free engine by GNU, not among absolute top by strength but still very strong. Current
CCRL Elo is 2825.

e Maia: FOSS engine, or rather neural network, notable by not trying to be the strongest, but rather
most human-like, i.e. tries to imitate human play, even with errors. There are several versions, each
trained for different strength. It is also notable by using pure neural network, i.e. it doesn't perform
any search, it's a pure "pattern recognition"/static engine that still manages to play quite well.

¢ Toledo Nanochess: Seems to be the world's smallest C chess engine, with only 1257 non-blank
characters of source code.

e smallchesslib/smolchess: Tiny LRS C library/engine, very weak but is very simple, small and
portable, may be good enough in many situations.

e Chessmaster: A famous proprietary chess video games with its own engine, it was strong for a video
game of its time (around 2000 Elo) but nowadays would be considered rather weak for an engine -- its
significance is cultural, it's used for comparisons, many people played against it and still use it to test
their engines against.

e Turochamp: Probably the first chess program ever, made by David Champernowne and Alan Turing
himself in 1948, in times when computers still couldn't execute it! It was very primitive, looking only
two moves ahead, and was only ever executed manually -- of course, it got raped pretty bad the
human opponent.

Chess LRS Wiki 143/895

Stats And Records

Chess stats are pretty interesting.
{ Some chess world records are here: https://timkr.home.xs4all.nl/records/records.htm. ~drummyfish }

Number of possible games is not known exactly, Shannon estimated it at 10~120 (lower bound, known as
Shannon number). Number of possible games by plies played is 20 after 1, 400 after 2, 8902 after 3, 197281
after 4, 4865609 after 5, and 2015099950053364471960 after 15.

Similarly the number of possibly reachable positions (position for which so called proof game exists) is
not known exactly, it is estimated to at least 10”40 and 10”50 at most. Numbers of possible positions by
plies is 20 after 1, 400 after 2, 5362 after 3, 72078 after 4, 822518 after 5, and 726155461002 after 11.

Shortest possible checkmate is by black on ply number 4 (so called fool's mate). As of 2022 the longest
known forced checkmate is in 549 moves -- it has been discovered when computing the Lomonosov
Tablebases.

Average game of chess lasts 40 (full) moves (80 plies). Average branching factor (number of possible
moves at a time) is around 33. Maximum number of possible moves in a position seems to be 218
(FEN: R6R/3Q4/1Q4Q1/4Q3/2Q4Q/Q4Q2/pplQ4/kBNN1IKB1 w - - 0 1).

White wins about 38% of games, black wins about 34%, the remaining 28% are draws (38.7%, 31.1%, 30.3%
respectively on Computer Chess Rating Lists).

What is the longest possible game? It depends on the exact rules and details we set, for example if a 50
move rule applies, a player MAY claim a draw but also doesn't have to -- but if neither player ever claims a
draw, a game can be played infinitely -- so we have to address details such as this. Nevertheless the longest
possible chess game upon certain rules has been computed by Tom7 at 17697 half moves in a paper for
SIGBOVIK 2020. Chess programming wiki states 11798 half moves as the maximum length of a chess game
which considers a 50 move rule (1966 publication).

The longest game played in practice is considered to be the one between Nikolic and Arsovic from 1989,
a draw with 269 moves lasting over 20 hours. For a shortest game there have been ones with zero moves;
serious decisive shortest game has occurred multiple times like this: 1.d4 Nf6 2.Bg5 c6 3.e3 Qa5+ (white
resigned).

Best players ever: a 2017 paper called Who is the Master? analyzed 20 of the top players of history based
on how good their moves were compared to Stockfish, the strongest engine. The resulting top 10 was (from
best): Carlsen (born 1990 Norway, peak Elo 2882), Kramnik (born 1975 Russia, peak Elo 2817), Fischer (born
1943 USA, peak Elo 2785), Kasparov (born 1963 Russia, peak Elo 2851), Anand (born 1969 India, peak Elo
2817), Khalifman, Smyslov, Petrosian, Karpov, Kasimdzhanov. It also confirmed that the quality of chess play
at top level has been greatly increasing. The best woman player in history is considered to be Judit Polgar
(born 1976 Hungary, peak Elo 2735), which still only managed to reach some 49th place in the world; by Elo
she is followed by Hou Yifan (born 1994 China, peak Elo 2686) and Koneru Humpy (born 1987 India, peak Elo
2623). Strongest players of black race (NOT including brown, e.g. India): lol there don't seem to be many
black players in chess :D The first black GM only appeared in 1999 (!!!) -- Maurice Ashley (born 1966 Jamaica,
peak rating 2504) who is also probably the most famous black chess player, though more because of his
commentator skills; Pontus Carlsson (peak Elo 2531) may be strongest. { Sorry if I'm wrong about the
strongest black player, this information is pretty hard to find as of course you won't find a race record in any
chess player database. So thanks to political correctness we just can't easily find good black players.
~drummyfish }

What's the most typical game? We can try to construct such a game from a game database by always
picking the most common move in given position. Using the lichess database at the time of writing, we get
the following incomplete game (the remainder of the game is split between four games, 2 won by white, 1 by
black, 1 drawn):

1. e4 e5 2. Nf3 Nc6 3. Bc4 Bc5 4. c3 Nfe 5. d4 exd4
6. cxd4 Bb4+ 7. Nc3 Nxe4 8. 0-0 Bxc3 9. d5 Bf6 10. Rel Ne7

Chess LRS Wiki 144/895

11. Rxe4 d6 12. Bg5 Bxg5 13. Nxg5 h6 14. Qe2 hxg5
15. Rel Be6 16. dxe6 f6 17. Re3 c6 18. Rh3 Rxh3
19. gxh3 g6 20. Qf3 Qa5 21. Rdl Qf5 22. Qb3 0-0-0
23. Qa3 Qc5 24. Qb3 d5 25. Bfl

You can try to derive your own stats, there are huge free game databases such as the Lichess CCO database
of billions of games from their server.

{ TODO: Derive stats about the best move, i.e. for example "best move is usually by queen by three squares"

or something like that. Could this actually help the play somehow? Maybe could be used for move ordering in
alpha-beta. ~drummyfish }

Rules

The exact rules of chess and their scope may depend on situation, this is just a sum up of rules generally
used nowadays.

The start setup of a chessboard is following (lowercase letters are for black men, uppercase for white men,
on a board with colored squares Al is black):

~

nw X oo S
HNWRAUIO N0

-~

Players take turns in making moves, white always starts. A move consists of moving one (or in special cases
two) of own men from one square to another, possibly capturing (removing from the board) one opponent's
man -- except for a special en passant move capturing always happens by moving one man to the square
occupied by the opposite color man (which gets removed). Of course no man can move to a square occupied
by another man of the same color. A move can NOT be skipped. A player wins by giving a checkmate to the
opponent (making his king unable to escape attack) or if the opponent resigns. If a player is to move but has
no valid moves, the game is a draw, so called stalemate. If neither player has enough men to give a
checkmate, the game is a draw, so called dead position. There are additional situation in which game can
be drawn (threefold repetition of position, 50 move rule). Players can also agree to a draw. A player may also
be declared a loser if he cheated, if he lost on time in a game with clock etc.

The individual men and their movement rules are (no man can move beyond another, except for knight who
jumps over other men):

man symbol —value movement comment
1F, may also 2F from start, captures 1F1L or 1F1R, also en
pawn P 1 promotes on last row
passant
knight N 3 !_-shape (2U1L, 2U1R, 2R1U, 2R1D, 2D1R, 2D1L, 2L1U, 2L1D),
jumps over
bishop B 3.25 any distance diagonally zaays on same color
rook R 5 any distance orthogonally (U, R, D or L) can reach all sq.
queen Q 9 like both bishop and rook strongest piece
king K inf any of 8 neighboring squares

{ Cool players call knights horses or ponies and pawns peasants, rook may be called a tower and bishop a
sniper as he often just sits on the main diagonal and shoot pieces that wonder through. Also pronounce en
passant as "en peasant". Nakamura just calls all pieces a juicer. ~drummyfish }

Chess LRS Wiki 145/895

Check: If the player's king is attacked, i.e. it is immediately possible for an enemy men to capture the king,
the player is said to be in check. A player in check has to make such a move as to not be in check after that
move.

A player cannot make a move that would leave him in check!

Castling: If a player hasn't castled yet and his king hasn't been moved yet and his kingside (queenside) rook
hasn't been moved yet and there are no men between the king and the kingside (queenside) and the king
isn't and wouldn't be in check on his square or any square he will pass through or land on during castling,
short (long) castling can be performed. In short (long) castling the king moves two squares towards the
kingside (queenside) rook and the rook jumps over the king to the square immediately on the other side of
the king.

Promotion: If a pawn reaches the 1st or 8th rank, it is promoted, i.e. it has to be switched for either queen,
rook, bishop or knight of the same color.

Checkmate: If a player is in check but cannot make any move to get out of it, he is checkmated and lost.

En passant: If a pawn moves 2 squares forward (from the start position), in the immediate next move the
opponent can take it with a pawn in the same way as if it only moved 1 square forward (the only case in
which a men captures another man by landing on an empty square).

Threefold repetition is a rule allowing a player to claim a draw if the same position (men positions, player's
turn, castling rights, en passant state) occurs three times (not necessarily consecutively). The 50 move rule
allows a player to claim a draw if no pawn has moved and no man has been captured in last 50 moves (both
players making their move counts as a single move here).

Variants

Besides similar games such as shogi there are many variants of chess, i.e. slight modifications of rules,
foremost worth mentioning is for example chess 960. The following is a list of some variants:

e antichess (suicide, ...): The goal is to lose all men or get stalemated, rules are a bit changed, e.qg.
castling and checks are removed and taking is forced.

e chess 960 aka Fischer's random: Starting position is randomly modified by shuffling the non-pawn
rows (with these rules: king must be between rooks, bishops on opposite colors and black/white's
positions are mirrored). The rules are the same with a slight modification to castling. This was
invented by Bobby Fischer to emphasize pure chess skill as opposed to memorizing the best opening
moves, he saw the opening theory as harmful to chess. Chess 960 is nowadays even advocated by
some to become the "main" version of chess.

e chess boxing: Chess combined with box, players switch between the two games, one wins either by
checkmate or knockout.

e crazyhouse: When a player captures a man, it goes into his reserve. From the reserve a man can be
dropped (as a man of the current player's color) to an empty square instead of making a normal
move. This is a rule taken from shoqi.

o different men: Some variants use different men, e.g. empress (moves like rook and knight) or
amazon (queen/knight).

¢ duck chess: After each move players place a duck on an empty square, the duck blocks the square.
The duck cannot be left on the same square, it has to be moved. There are no checks, players win by
capturing the king.

e fog of war: Makes chess an incomplete-information game by allowing players to only see squares
they can immediately move to (this is similarly to some strategy video games).

¢ horde chess: Asymmetric starting position: large number of black pawns vs a white army of
traditional men. Rules are slightly modified, e.g. black can only be defeated by having all pawns
captured (there is no black king).

¢ infinite chess: Infinite chessboard. { Huge rabbithole with things like "mate in omega" etc.
~drummyfish }

e minichess: Smaller chessboard, e.g. 4x4, 4x8 etc. Los Alamos chess is played at 6x6 board without
bishops (also no promotion to bishop, no pawn double step, no en passant, no castling). Some are
already solved (e.g. 3x3).

Chess LRS Wiki 146/895

e more players: E.g. 3 man chess or 4 player chess allow more than two players to play, some use
different boards.

¢ old chess: The rules of chess itself have been changing over time (e.g. adding the 50 move rule etc.).
The older rule sets can be seen as variants as well.

e puzzle: For single player, chess positions are presented and the player has to find the best move or
sequence of moves.

e racing kings: The starting position has both players on the same side, the goal is to get one's king to
the other side first.

e different board geometries/topologies: e.g. non-Euclidean (hyperbolic, spherical, torus, ...),
hexagonal chess (had some considerable following) etc.

¢ 3D chess: 3D generalization of chess, possible are also other dimensions (4D, 5D, ... maybe even
1D7).

e randomly chosen variant: Here a chess variant to be played is chosen at random before the game,
e.g. by dice roll. { This is an idea | got, not sure if this exists or has a different name. ~drummyfish }

Playing Tips
Some general tips and rules of thumb, mostly for beginners:

¢ Try to control the center of the board (D4, D5, E4, E5).

e Don't bring the queen out too early, the opponent can harass it and get ahead in development.

e Learn some universal setup openings or "systems" to play, e.g. London, King's Indian, the hippo etc.

¢ Develop your men before attacking, usually knights go out before bishops, bishops are well placed on
the longest diagonals as "snipers".

¢ Learn basic tactics, especially forks (attacking two or more men at once so that one of them cannot
escape capture) and pins (attack one man so that if he moves out of the way he will expose another
one to be captured).

¢ King safety is extremely important until endgame, castle very early but not extremely early. In the
endgame (with queens out) king joins the battle as another active man.

e Pawn structure is very important.

e Watch out for back rank checkmates, make an escape square for your king.

¢ Rooks want to be on open files, you also want to CONNECT them (have both guard each other). Also a
rook in the opponents second row (2nd/7th rank) is pretty good.

¢ Bishops are generally seen a bit more valuable than knights, especially in pairs -- if you can trade
your knight for opponent's bishop, it's often good. If your opponent has two bishops and you only
have one, you want to trade yours for his so he doesn't have the pair. A knight pair is also pretty
powerful though, especially when the knights are guarding each other.

¢ "Knight on a rim is dim" (knights are best placed near the center).

¢ An extremely strong formation is both rooks and the queen on the same open file.

¢ Blocking the opponents man so that it can't move is almost as good as taking it. And vice versa: you
want to activate all your men if possible.

¢ Nubs are weak against long range bishops, they can't see them. Place a bishop to corner on the long
diagonal and just snipe the opponent's material.

¢ Don't play "hope chess", always suppose your opponent will play the best move he can.

¢ If you can achieve something with multiple men, usually it's best to do it with the weakest one.

¢ TODO: moar

How To Disrespect Your Opponent And Other Lulz In Chess

see also unsportmanship
WORK IN PROGRESS, pls send me more tips :)

¢ OTB (over the board) only:
¢ Turn your knights to face backwards or in another weird way (always face the opponent's king
etc.). Also place the pieces unevenly on the squares to piss off opponents with OCD and
autism.
+ Behave weird, make weird faces, walk extremely far away from the board and walk in circles
(or just get up and stand up directly behind your opponent in a completely upright position

Chess LRS Wiki 147/895

staring into the distance without moving at all like a robot lol), constantly sneeze (try to
sneeze every time the opponent touches a piece), make very long unbroken eye contact with
the opponent while smiling as if you know what he's thinking, call the referee constantly, go to
the toilet after every move, pretend to fall asleep from boredom etc. Overeat on beans before
the game so you fart a lot and always try to fart as loud as possible. Wear nice clothes but
right before the game go sweat to the gym so that you smell like a pig and distract the
opponent with toxic fume. If you're a wimmin behave sexually, keep grabbing your boobs, lick
your lips and opponent's captured pieces and silently moan sometimes as if you're having an
orgasm, pretend to masturbate under the table; if your opponent is male he is almost
definitely smarter than you, you gotta use your woman weapons, but it will probably work
easily on the chess virgins.
+ In a tournament change play based on opponent's race or sex, for example play only one
opening against white people and another opening against black people, see if anyone notices
the pattern :D
+ Outside tournament take advantage of the fact that you can do whatever the fuck you want:
have one hand constantly on the clock and play with the other hand (considered rude and
often forbidden), touch and knock over your opponent's pieces, take back your moves, ... and
of course when you're losing, "accidentally" knock over the whole board and be like "oops, let's
consider it a draw then" :D
¢ Trash talk the referee.
+ Correct the opponent's pronunciation of en passant, insist it's pronounced "en peasant".
...
e online only:
+ Be annoying and offensive in chat, if opponent blunders write gg, spam ez when you win. If he
wins say it was a shit game and accuse him of cheating.
+ Constantly ask for takebacks, offer draws, report legit opponents for cheating and offensive
behavior.
...
¢ Play the bongcloud, fool's mate, 1. h3 or similar offensive opening, especially against a stronger
player. Offer a draw after 1st move. Just play knight F3 and back constantly. Castle manually even if
you don't have to. Play the exact mirror of opponent's moves -- if he tries to break it then just always
try to get back to mirrored position.
¢ When losing constantly offer draws, prolong the game AS MUCH AS POSSIBLE, before the very last
move just let the clock run out.
¢ Repeatedly try to make swastikas on the board, especially against colored opponents.
e Underpromote pawns e.g. to knights or bishops.
¢ When playing a noob, don't just mate him but absolutely rape him, promote all pawns to knights
before winning, then say you didn't even have to try and that he should look into another game as
chess is clearly not his game.
¢ Look up chess etiquette and do the exact opposite of what it says.

LRS Chess

{ Has someone already made this tho? Seems like a pretty obvious simplification to make. ~drummyfish }

Chess is only mildly bloated but what if we try to unbloat it completely? Here we propose the LRS version of
chess. The rule changes against normal chess are:

¢ No castling.

¢ No en passant.

e Promotion is always to queen.

¢ No checks or checkmates, king is just another man.

e Whoever takes the opponent's king first wins.

¢ If a player has no available moves, he loses.

¢ Only a single draw rule: if game doesn't end in 1024 half moves or fewer, it is a draw. l.e. there are no
weird draw rules (50 move, repetition, ...). Of course players may still agree on draw anytime.

¢ Random: optionally random variant of LRS chess can be played. Here we randomly shuffle the white
player's back row men in the starting position and mirror it for black (no weird conditions on men
positions like in chess 960).

Chess LRS Wiki 148/895

See Also

¢ shoqi
*do
e hexapawn

e hex game
e checkers

e advance wars

* backgammon
e Catan

¢ Deep Blue
o stockfish
e anal bead

chinese

Chinese

Chinese is one of the most bloated natural human languages, spoken in China.

Any text in chinese basically looks like this:

HHHHHHHHH AR
HHHHHHHAAAHHHHH AR
BRI
HHHHHHHHH AR

It is so bloated that some Chinese people literally don't understand other Chinese people.

cloud

"Cloud Computing”

Cloud is just someone else's computer.

Cloud computing, more accurately known as clown computing, means giving up an autonomous computer by
storing one's data as well as running one's programs on someone else's (often a corporation's) computer,
known as the cloud, through the Internet, becoming wholly dependent on someone else to which one gives
all the power. While the general idea of server computers and remote terminals is not bad in itself and may
be utilized in very good ways, the term cloud computing stands for abusing this idea e.g. by capitalists or
states to take away autonomous computers from the people as well as to restrict freedoms of people in other
ways, for example by pushing DRM, making it impossible to truly own a copy of software or other data, to run
computations privately, isolated from the Internet or run non-approved, user-respecting software. Moreover
clown computing as applied nowadays is mostly a very bad engineering approach that wastes bandwidth,
introduces lag, requires complex and expensive infrastructure etc.

Despite all this "cloud" is the mainstream nowadays, it is the way of computing among normies, even despite
regular leaks and losses of their personal data etc., simply because they're constantly being pushed to it by
the big tech (Apple, Goodgle, Micro$ost, ...) -- many times they don't even have a choice, they are simply
supposed to SHUT UP AND CONSUME. And of course they wouldn't even have an idea about what's going on
in the first place, all that matters to a normie is "comfort", "everyone does it", "l just need my TikTok" etc.
Zoomers probably aren't even aware of the cloud, they simply have phones with apps that show their photos
if Apple approves of it, they don't even care how shit works anymore.

In the future non-cloud computers will most likely become illegal. This will be justified by autonomous
computers being "dangerous", only needed by terrorists, pirates and pedophiles. An autonomous computer
will be seen as a gun, the right to own it will be greatly limited.

"Cloud Computing" LRS Wiki 149/895

C

C

{ We have a C tutorial! ~drummyfish }

Cis an old low level structured statically typed imperative compiled programming language, it is very fast
and currently mostly used by less retarded software. Though by very strict standards it would still be

considered bloated, compared to any mainstream modern language it is very bullshitless, KISS and greatly
established and "culturally stable", so it is also the go-to language of the suckless community as well as most
true experts, for example the Linux and OpenBSD developers, because of its good, relatively simple design,
uncontested performance, wide support, great number of compilers, level of control and a greatly
established and tested status. C is perhaps the most important language in history; it influenced, to
smaller or greater degree, basically all of the widely used languages today such as C++, Java, JavaScript
etc., however it is not a thing of the past -- in the area of low level programming C is still the number one
unsurpassed language. C is by no means perfect but it is currently probably the best choice of a
programming language (along with comun, of course). Though C is almost always compiled, there have
appeared some C interpreters as well.

{ Look up The Ten Commandments for C Programmers by Henry Spencer. Also the Write in C song (parody of
Let it Be). ~drummyfish }

It is usually not considered an easy language to learn because of its low level nature: it requires good
understanding of how a computer actually works and doesn't prevent the programmer from shooting himself
in the foot. Programmer is given full control (and therefore responsibility). There are things considered
"tricky" which one must be aware of, such as undefined behavior of certain operators and raw pointers. This
is what can discourage a lot of modern "coding monkeys" from choosing C, but it's also what inevitably
allows such great performance -- undefined behavior allows the compiler to choose the most efficient
implementation. On the other hand, C as a language is pretty simple without modern bullshit concepts such
as OO0P, it is not as much hard to learn but rather hard to master, as any other true art. In any case you
have to learn C even if you don't plan to program in it regularly, it's the most important language in history
and lingua franca of programming, you will meet C in many places and have to at least understand it:
programmers very often use C instead of pseudocode to explain algorithms, C is used for optimizing critical
parts even in non-C projects, many languages compile to C, it is just all around and you have to understand it
like you have to understand English.

Some of the typical traits of C include great reliance on and utilization of preprocessor (macros, the
underlying C code is infamously littered with "#ifdefs" all over the place which modify the code just before
compiling -- this is mostly used for compile-time configuration and/or achieving better performance and/or
for portability), pointers (direct access to memory, used e.g. for memory allocation, this is infamously
related to "shooting oneself in the foot", e.g. by getting memory leaks) and a lot of undefined behavior
(many things are purposefully left undefined in C to allow compilers to generate greatly efficient code, but
this sometimes lead to weird bugs or a program working on one machine but not another, so C requires
some knowledge of its specification). You can also infamously meet complicated type declarations like void
(*float(int,void (*n)(int))) (int), these are frequently a subject of jokes ("look, C is simple").

Unlike many "modern" languages, C by itself doesn't offer too much advanced functionality such as
displaying graphics, working with network, getting keyboard state and so on -- the base language doesn't
even have any input/output, it's a pure processor of values in memory. The standard library offers things like
basic I/O with standard input/output streams, basic operations with files, strings, time, math functions and
other things, but for anything more advanced you will need an external library like SDL or Posix libraries.

C is said to be a "portable assembly" because of its low level nature, great performance etc. -- though C is
structured (has control structures such as branches and loops) and can be used in a relatively high level
manner, it is also possible to write assembly-like code that operates directly with bytes in memory through
pointers without many safety mechanisms, so C is often used for writing things like hardware drivers. On the
other hand some restrain from likening C to assembly because C compilers still perform many
transformations of the code and what you write is not necessarily always what you get.

C LRS Wiki 150/895

Mainstream consensus acknowledges that C is among the best languages for writing low level code and code
that requires performance, such as operating systems, drivers or games. Even scientific libraries with
normie-language interfaces -- e.g. various machine learning Python libraries -- usually have the performance
critical core written in C. Normies will tell you that for things outside this scope C is not a good language, with
which we disagree -- we recommend using C for basically everything that's supposed to last, i.e. if you want
to write a good website, you should write it in C etc.

Is C low or high level? This depends on the context. Firstly back in the day when most computers were
programmed in assembly, C was seen as high level, simply because it offered the highest level of abstraction
at the time, while nowadays with languages like Python and JavaScript around people see C as very low level
by comparison -- so it really depends on if you talk about C in context of "old" or "modern" programming and
which languages you compare it to. Secondly it also depends on HOW you program in C -- you may choose to
imitate assembly programming in C a lot, avoid using libraries, touch hardware directly, avoid using complex
features and creating your own abstractions -- here you are really doing low level programming. On the other
hand you can emulate the "modern" high-level style programming in C too, you can even mimic QOP and
make it kind of "C++ with different syntax", you may use libraries that allow you to easily work with strings,
heavy macros that pimp the language to some spectacular abomination, you may write your own garbage
collector etc. -- here you are basically doing high level programming in C.

Fun: main[-1u]={1}; is a C compiler bomb :) it's a short program that usually makes the compiler produce a
huge binary.

History and Context

C was developed in 1972 at Bell Labs alongside the Unix operating system by Dennis Ritchie and Brian
Kerninghan, as a successor to the B language (portable language with recursion) written by Denis Ritchie and
Ken Thompson, which was in turn inspired by the the ALGOL language (code blocks, lexical scope, ...). C was
for a while called NB for "new B". C was intimately interconnected with Unix and its hacker culture, both
projects would continue to be developed together, influencing each other. In 1973 Unix was rewritten in C. In
1978 Keninghan and Ritchie published a book called The C Programming Language, known as K&R, which
became something akin the C specification. In March 1987 Richard Stallman along with others released the
first version of GNU C compiler -- the official compiler of the GNU project and the compiler that would go on
to become one of the most widely used. In 1989, the ANSI C standard, also known as C89, was released by
the American ANSI -- this is a very well supported and overall good standard. The same standard was also
adopted a year later by the international ISO, so C90 refers to the same language. In 1999 ISO issues a new
standard that's known as C99, still a very good standard embraced by LRS. Later in 2011 and 2017 the
standard was revised again to C11 and C17, which are however no longer considered good.

Standards

C is not a single language, there have been a few standards over the years since its inception in 1970s. The
notable standards and versions are:

e K&R C: C as described by its inventors in the book The C Programming Language, before official
standardization. This is kind of too ancient nowadays.

¢ C89/C90 (ANSI/ISO C): First fully standardized version, usable even today, many hardcore C
programmers stick to this version so as to enjoy maximum compiler support.

¢ C95: A minor update of the previous standard, adds wide character support.

¢ C99: Updated standard from the year 1999, striking a nice balance between "modern" and "good
old". This is a good version to use in LRS programs, but will be a little less supported than C89, even
though still very well supported. Notable new features against C89 include // comments, stdint
library (fixed-width integer types), float and long long type, variable length stack-allocated arrays,
variadic macros and declaration of variables "anywhere" (not just at function start).

¢ C11: Updated standard from the year 2011. This one is too bloated and isn't worth using.

¢ C17/C18: Yet another update, yet more bloated and not worth using anymore.

Quite nice online reference to all the different standards (including C++) is available at
https://en.cppreference.com/w/c/99.

C LRS Wiki 151/895

LRS should use C99 or C89 as the newer versions are considered bloat and don't have such great support in
compilers, making them less portable and therefore less free.

The standards of C99 and older are considered pretty future-proof and using them will help your program be
future-proof as well. This is to a high degree due to C having been established and tested better than any
other language; it is one of the oldest languages and a majority of the most essential software is written in C,
C compiler is one of the very first things a new hardware platform needs to implement, so C compilers will
always be around, at least for historical reasons. C has also been very well designed in a relatively minimal
fashion, before the advent of modern feature-creep and and bullshit such as OOP which cripples almost all
"modern" languages.

Compilers

C is extreme well established, standardized and implemented so there is a great number of C compilers
around. Let us list only some of the more notable ones.

e gcc: The main "big name" that can compile all kinds of languages including C, used by default in
many places, very bloated and can take long to compile big programs, but is pretty good at
optimizing the code and generating fast code. Also has number of frontends and can compile for
many platforms. Uses GENERIC/GIMPLE intermediate representation.

e clang: Another big bloated compiler, kind of competes with gcc, is similarly good at optimization etc.
Uses LLVM intermediate representation.

e tcc: Tiny C compiler, suckless, orders of magnitude smaller (currently around 25 KLOC) and simpler
than gcc and clang, doesn't use any intermediate representation, cannot optimize nearly as well as
the big compilers so the generated executables can be a bit slower and/or bigger (though sometimes
they may be smaller), however besides its internal simplicity there are many advantages, mainly e.g.
fast compilation (claims to be 9 times faster than gcc) and small tcc executable (about 100 kB).
Seems to only support x86 at the moment.

e scc: Another small/suckless C compiler, currently about 30 KLOC.

e DuskCC: Dusk OS C compiler written in Forth, focused on extreme simplicity, probably won't adhere to
standards completely.

¢ 8¢, 8cc, chibicc: Some other small compilers.

e c2bf: Partially implemented C to brainfuck compiler.

e |cc: Proprietary, source available small C compiler, about 20 KLOC.

e pcc: A very early C compiler that was later developed further to support even the C99 standard.

e Borland Turbo C: old proprietary compiler with |DE.

e sdcc (small device C compiler): For small 8 bit microcontrollers.

e msvc (Micro$oft visual C++): Badly bloated proprietary C/C++ compiler by a shitty corporation.
Avoid.

Standard Library

Besides the pure C language the C standard specifies a set of libraries that have to come with a
standard-compliant C implementation -- so called standard library. This includes e.g. the stdio library for
performing standard input/output (reading/writing to/from screen/files) or the math library for mathematical
functions. It is usually relatively okay to use these libraries as they are required by the standard to exist so
the dependency they create is not as dangerous, however many C implementations aren't completely
compliant with the standard and may come without the standard library. Also many stdlib implementations
suck or you just can't be sure what the implementation will prefer (size? speed?) etc. So for sake of
portability it is best if you can avoid using standard library.

The standard library (libc) is a subject of live debate because while its interface and behavior are given by
the C standard, its implementation is a matter of each compiler; since the standard library is so commonly
used, we should take great care in assuring it's extremely well written, however we ALWAYS have to choose
our priorities and make tradeoffs, there just mathematically CANNOT be an ultimate implementation that will
be all extremely fast and extremely memory efficient and extremely portable and extremely small. So
choosing your C environment usually comprises of choosing the C compiler and the stdlib implementation. As
you probably guessed, the popular implementations (glibc et al) are bloat and also often just shit. Better

C LRS Wiki 152/895

alternatives thankfully exist, such as:
e musl

e uclibc

e not using the standard library :)

=

Good And Bad Things About C

Firstly let's sum up some of the reasons why C is so good:

¢ C as a language is relatively simple: Though strictly speaking it's not in the league of most
minimal languages like Eorth and Lisp, C is the next best thing in terms of minimalism and the small
amount of bloat it contains is usually somehow justified at least, the language (or its subset) can be
implemented in a quite minimal way if one so desires. It employs little abstraction. This all helps
performance, freedom and encourages many implementations. C's standard library also isn't gigantic,
the important parts basically just provide I/O and help with simple things like manipulating strings and
memory allocation, so new C implementations aren't burdened by having to implement tons of
libraries.

It is extremely fast and efficient: Owing to other mentioned points such as good specification,
simplicity, lack of bullshit and having a good balance between low and high level attributes, C is
known for being possibly the fastest portable language in existence, also greatly efficient with
memory etc.

C doesn't limit you or hold (tie) your hands: This is bad for the beginner but great for the expert,
most of the times C won't "protect” you from doing anything, even crashing your program -- this kind
of freedom is necessary to achieve truly marvelous things, C is like a race car, it doesn't have speed
limiters and automatic transmission, nothing that would tie your hands or increase the car weight, it
trusts in you being a good driver.

C is highly standardized: Many languages have some kind of "online specification", however C is on
the next level by literally being officially standardized by the forefront standardizing organizations like
ANSI and ISO, by full time paid experts over many years and iterations, so the language is extremely
well defined and described, down to saying which exact things are left undefined/unspecified, leaving
freedom of implementation that leads to the language's great performance.

It's extremely well establishes, optimized, stable and time tested, with many tools: Being
among the oldest languages, the language of the old time hackers and the language of Unix, maybe
the most important piece of software in history, C has been so widely adopted, reimplemented,
optimized and tested over and over that it's considered to be among the most essential pieces of
software any platform has to have. Everything on the low level is written in C, so you essentially first
have to have C to be able to run anything else. Many companies have invested great many resources
to making C fast as it benefited them. While other languages come and go, or at least mutate and
become something else over time, C stands as one of very few stable things in computer technology.
There are also tons and tons of tools that help with C development, various static analyzers,
debuggers, code beautifiers etcetc.

It doesn't have any modern bullshit: There is no OOP, generics, garbage collection, no package
manager etc.

There is a huge number of compilers: While a "modern" language has some kind of main
reference implementation and then maybe one of two alternative implementations, C has dozens
(maybe even hundreds) of compilers. You'll find compilers under all the licenses, huge ones with
many features and great optimizations, small ones that will run on tiny devices, ones that compile
very fast, ones that translate C to other languages etcetc.

It is elitist: The relatively higher difficulty of learning the language has a nice effect of keeping idiots
out of its community, keeping the language less intoxicated by retarded ideas. { NOTE: The word
"elitist" here is not to really mean inherently "discriminating" of course, but rather "unpopular"
because it's quite different from the mainstream and requires some effort on unlearning bad
mainstream habits, i.e. nowadays it needs some dedication, you can't just join in effortlessly. It's
elitist in the same way in which Unix systems or suckless software are elitist. ~drummyfish }

C is close to the hardware, reflecting how computers work: This has many advantages: firstly
efficiency, as code that maps well to hardware is predictable and efficient, lacking magic in
translation. It simplifies implementations, making the language more free. Then also the programmer
himself is close to the machine, he has to learn how it works, what it likes and dislikes -- a knowledge

C LRS Wiki 153/895

every programmer has to have.

e There is a great balance between low and high level (minimalism vs "features™"): C seems to
have hit a sweet spot at which it offers just enough high level features for comfortable programming,
such as data types, functions and expressions, while not crossing the line beyond which it would have
to pay a high cost for this comfort, i.e. it managed to buy us a lot practically for free. Things like this
cannot really be planned well, it takes a genius and intuition to design a language this way, this shows
the greatness of the old master programmers.

¢ It is old, written only by white male hackers, at times when capitalism was weaker: No
women were probably involved in the development (of course we aren't racists or sexists, it's just a
fact that white men are best at programming), the development was largely part of genuine research,
at the time when computers weren't mainstream and computer technology wasn't being raped as
hard as today. C developers didn't even think of embedding any political message in the language.
Times like this will never be repeated.

Now let's admit that nothing is perfect, not even C; it was one of the first relatively higher level languages
and even though it has showed to have been designed extremely well, some things didn't age great, or were
simply bad from the start. We still prefer this language as usually the best choice, but it's good to be aware
of its downsides or smaller issues, if only for the sake of one day designing a better language. Please bear in
mind all here are just suggestions, they made of course be a subject to counter arguments and further
discussion. Here are some of the bad things about the language:

¢ C specification (the ISO standard) is proprietary :(The language itself probably can't be
copyrighted, nevertheless this may change in the future, and a proprietary specs lowers C's
accessibility and moddability (you can't make derivative versions of the spec).
¢ The specification is also long as fuck (approx. 500 pages, our of that 163 of the pure language),
indicating bloat/complexity/obscurity. A good, free language should have a simple definition. It could
be simplified a lot by simplifying the language itself as well as dropping some truly legacy
considerations (like BCD systems?) and removing a lot of undefined behavior.
e Some behavior is weird and has unnecessary exceptions, for example a function can return
anything, including a struct, except for an array. This makes it awkward to e.g. implement vectors
which would best be made as arrays but you want functions to return them, so you may do hacks like
wrapping them inside a struct just for this.
Some things could be made simpler, e.g. using reverse polish notation for expressions, rather
than expressions with brackets and operator precedence, would make implementations much simpler,
increasing sucklessness (of course readability is an argument).
Some things could be dropped entirely (enums, bitfields, possibly also unions etc.), they can be
done and imitated in other ways without much hassle.
The preprocessor isn't exactly elegant, it has completely different syntax and rules from the
main language, not very suckless -- ideally preprocessor uses the same language as the base
language.
The syntax is sucky sometimes, e.g. case with variable inside it HAS TO be enclosed in curly
brackets but other ones don't, data type names may consist of multiple tokens (Long long int etc.),
multiplication uses the same symbol as pointer dereference (*), many preprocessor commands need
to be on separate lines (makes some one liners impossible), also it's pretty weird that the condition
after if has to be in brackets etc., it could all be desighed better. Keywords also might be better
being single chars, like ? instead of if etc. (see comun). A shorter source code that doesn't try to
imitate English would be probably better.
Some undefined/unspecified behavior is probably unnecessary -- undefined behavior isn't bad
in general of course, it is what allows C to be so fast and efficient in the first place, but some of it has
shown to be rather cumbersome; for example the unspecified representation of integers, their binary
size and behavior of floats leads to a lot of trouble (unknown upper bounds, sizes, dangerous and
unpredictable behavior of many operators, difficult testing etc.) while practically all computers have
settled on using 8 bit bytes, two's complement and IEEE754 for floats -- this could easily be made a
mandatory assumption which would simplify great many things without doing basically any harm.
New versions of C actually already settle on two's complement. This doesn't mean C should be
shaped to reflect the degenerate "modern" trends in programming though!
e Some basic things that are part of libraries or extensions, like fixed width types and binary literals and
possibly very basic I/O (putchar/readchar), could be part of the language itself rather than provided by
libraries.

LRS Wiki 154/895

¢ All that stuff with .c and .h files is unnecessary, there should just be one file type probably.

Basics
This is a quick overview, for a more in depth tutorial see C tutorial.

A simple program in C that writes "welcome to C" looks like this:
#include <stdio.h> // standard I/0 library
int main(void)
// this is the main program
puts("welcome to C");

return 0; // end with success

}

You can simply paste this code into a file which you name e.g. program.c, then you can compile the program
from command line like this:

gcc -0 program program.c

Then if you run the program from command line (./program on Unix like systems) you should see the
message.

Cheatsheet/Overview

Here is a quick reference cheatsheet of some of the important things in C, also a possible overview of the
language.

data types (just some):

data type values (size) printf notes
int (signed int, integer, atleast-32767 to 32767 (16 bit), o%d native integer, fast (prefer for
) often more ° speed)
. . integer, non-negative, at least 0 to 65535, same as int but no negative

unsigned int %Uu
often more values

signed char Lr;tigir, atleast -127 to 127, mostly -128 %C, %hhi char forced to be signed

unsigned char integer, at least 0 to 255 (almost always %C, %hhu smallest memory chunk, byte
the case)

char integer, at least 256 values %C 5|g_ned or unsigned, used for

string characters

short integer, at least -32767 to 32767 (16 bit) %hd !slrkneaﬁg: but supposed to be

unsigned short integer, non-negative, at least 0 to 65535 %hu like short but unsigned
integer, at least -2147483647 to o D

long 2147483647 (32 bit) s 1d for big signed values

unsigned long integer, at least 0 to 4294967295 (32 bit) %lu for big unsigned values
integer, at least some -9 *10718to 9 * C

long long 10~18 (64 bit) 51 1d for very big signed values

unsigned long integer, at least 0 to o . .

long 18446744073709551615 (64 bit) sLLu for very big unsigned values

float %f

C LRS Wiki 155/895

data type

double
T [N]
T*

uint8 t

int8 t

uintle t
intl6_t
uint32 t
int32_t

int least8 t

int _fast8 t

struct

values (size)

floating point, some -3 * 10"38 to 3 *
10~38

floating point, some -1 * 10°~308 to
10~308

array of N values of type T

memory address

0 to 255 (8 bit)

-128 to 127 (8 bit)

0 to 65535 (16 bit)

-32768 to 32767 (16 bit)
-2147483648 to 2147483647 (32 bit)
0 to 4294967295 (32 bit)

at least -128 to 127

at least -128 to 127

printf

1f

o®

%p

PRIu8

PRId8

PRIul6
PRId16
PRIu32
PRId32

PRIALEASTS

PRIAFASTS8

notes

float, tricky, bloat, can be slow,
avoid

like float but bigger

array, if T is char then string

pointer to type T, (if char then
string)

exact width, two's compl., must
include <stdint.h>

like uint8 t but signed
like uint8 t but 16 bit
like uint16_t but signed
like uint8 t but 32 bit
like uint32_t but signed

signed integer with at least 8
bits, <stdint.h>

fast signed int. with at least 8
bits, <stdint.h>

structured data type

There is no bool (true, false), use any integer type, 0 is false, everything else is true (there may be some
bool type in the stdlib, don't use that). A string is just array of chars, it has to end with value 0 (NOT ASCII
character for "0" but literally integer value 0)!

main program structure:

#include <stdio.h>

int main(void)

// code here

return 0;

}

branching aka if-then-else:

if (CONDITION)

{

// do something here

}

else // optional

// do something else here

}

for loop (repeat given number of times):

for (int i = 0; i < MAX; ++i)

{

// do something here, you can use i

}

while loop (repeat while CONDITION holds):

while (CONDITION)

// do something here

}

do while loop (same as while but CONDITION at the end), not used that much:

C

LRS Wiki

156/895

do
{

// do something here
} while (CONDITION);

function definition:

RETURN_TYPE myFunction (TYPEl paraml, TYPE2 param2, ..

{ // return type can be void
// do something here

}

compilation (you can replace gcc with another compiler):

2)

¢ quickly compile and run: gcc myprogram.c && ./a.out.
e compile more properly: gcc -std=c99 -Wall -Wextra -pedantic -03 -o myprogram myprogram.c.

To lin

k a library use -1library, e.g. -lm (when using <math.h>), -1SDL2 etc.

The following are some symbols (functions, macros, ...) from the standard library:

symbol

putchar(c)
getchar()

puts(s)

printf(s, a, b, ...)

scanf(s, a, b, ...)

fopen(f,mode)

fclose(f)
fputc(c,f)
fgetc(f)
fputs(s,f)
fprintf(s, a, b, ...)

fscanf(f, s, a, b, ...)

fread(data,size,n,f)

fwrite(data,size,n,f)

EOF
rand()

C

library
stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h

stdio.h
stdio.h
stdio.h
stdio.h
stdio.h

stdio.h

stdio.h

stdio.h

stdio.h
stdlib.h

description

Writes a single character
to output.

Reads a single character
from input.

Writes string to output
(adds newline at the end).

Complex print func., allow
printing numbers, their
formatting etc.

Complex reading func.,
allows reading numbers
etc.

Opens file with given
name in specific mode,
returns pointer.

Closes previously opened
file.

Writes a single character
to file.

Reads a single character
from file.

Writes string to file
(without newline at end).

Like printf but outputs to
a file.
Like scanf but reads from
a file.

Reads n elems to data
from file, returns no. of
elems read.

Writes n elems from data

to file, returns no. of elems

writ.

End of file value.

LRS Wiki

example

putchar('a');
int inputChar = getchar();

puts("hello");

printf("value is %d\n",var);

scanf("%d",&var);

FILE *myFile = fopen("myfile.txt","r");

fclose(myFile);
fputc('a',myFile);
int fileChar = fgetc(myFile);
fputs("hello",myFile);

fprintf(myFile, "value is %d\n",var);

fscanf(myFile, "%d",&var);

fread(myArray,sizeof(item),1,myFile);

fwrite(myArray,sizeof(item),1,myFile);

int c¢ = getchar(); if (c == EOF) break;
char randomLetter = 'a' + rand() % 26;

157/895

symbol library description example

Returns pseudorandom
number.

Seeds pseudorandom
number generator.

stdlib.h, Value assigned to pointers

srand(n) stdlib.h srand(time(NULL));

: . . _ .
NULL that point "nowhere", int *myPointer NULL;
Dynamically allocates
malloc(size) stdlib.h memory, returns pointer to int *myArr = malloc(sizeof(int) * 10);
it (or NULL).
Resizes dynamically
realloc(mem,size) stdlib.h allocates memory, returns myArr = realloc(myArr,sizeof(int) * 20);
pointer (or NULL).
free(mem) stdlib.h Frees dynamically free(myArr);
allocated memory.
atof(str) stdlib.h Co.nverts string to floating double val = atof(answerStr);
point number.
atoi(str) stdlib.h Converts string to integer int val = atof(answerStr);
number.
EXIT_SUCCESS stalib.n Y2lue the program should 4\ ExTT SyCCESS:
- return on successful exit. -
EXIT_FAILURE stdlip.n Value the programshould 4\ Ex1T FATLURE;
- return on exit with error. -
, Returns sine of angle in L]
sin(x) math.h RADIANS, float angleSin = sin(angle);
cos(x) math.h L|kg sin but returns float angleCos = cos(angle);
cosine.
Returns tangent of angle _ .
tan(x) math.h in RADIANS. float angleTan = tan(angle);
; Returns arcus sine of . .]
asin(x) math.h angle, in RADIANS, float angle = asin(angleSine);
ceil(x) math.n Rounds afloating point 4 /a0y = ceil(y);
value up.

floor(x) math.h Rounds a floating point double x = floor(y);
value down.

fmod(a,b) math.h Returns floating point 40 16 rem = modf(x,3.5);
reminded after division.

isnan(x) math.h .Checks if given float value if (!isnan(x))
is NaN.
Float quiet NaN (not a

NAN math.h number) value, don't if (y == 0) return NAN;
compare!
Computes natural _ .

log(x) math.h logarithm (base e). double x = log(y);
Computes decadic _ .

log10(x) math.h logarithm (base 10). double x = loglO(y);
Computes binary _ .

log2(x) math.h logarithm (base 2). double x = log2(y);
Computes exponential _ .

exp(x) math.h function (e~x). double x = exp(y);

sqrt(x) math.h Computes floating point double dist = sqrt(dx * dx + dy * dy);
square root.

pow(a,b) math.h double cubeRoot = pow(var,1.0/3.0);

C LRS Wiki 158/895

symbol library description example

Power, raises a to b (both
floating point).

abs(x) math.h Computes absolute value. double varAbs = abs(var);

INT MAX limits.n Maximum valuethat can s oiewint max: sd\n", INT MAX);
be stored in int type.

Fills block of memory with
given values.

Copies bytes of memory
memcpy(dest,src,size) string.h from one place to another, memcpy(destArr,srcArr,sizeof(srcArr);
returns dest.

Copies string (zero
strcpy(dest,src) string.h terminated) to dest, char myStr[16]; strcpy(myStr,"hello");
unsafe.

Like strcpy but limits max
strncpy(dest,src,n) string.h number of bytes to copy, strncpy(destStr,srcStr,sizeof(destStr));
safer.

Compares two strings,

memset(mem,val,size) string.h memset (myArr,0,sizeof (myArr));

H H ' n s n
strcmp(sl,s2) string.h returns 0 if equal. if (!strcmp(strl,"something"))
strlen(str) string.h SRter;c:ljgns length of given int 1 = strlen(myStr);
Finds substring in string,
strstr(str,substr) string.h returns pointer to it (or if (strstr(cmdStr,"quit") !'= NULL)
NULL).
Stores calendar time
time(t) time.h (often Unix t.) int (can be printf("tstamp: %d\n", (int) time(NULL));
NULL), returns it.
clock() time.h ~Returnsapprox. CPUcycle ;e ucpy ticks: sd\n", (int) clock());
count since program start.
CLOCKS PER SEC time.n Numberof CPUtIcks per .\ ¢p1apsed = clock() / CLOCKS PER SEC;

second.
Some Programs In C

TODO

See Also

o o
O |oo

ogomun
e C tutorial
o C pitfalls

e C programming style
oCt++

¢ |0CC
e HolyC

e QuakeC
e Pascal
e Fortran
o LISP

e FORTH

e memory management in C

(@]

coc

C LRS Wiki 159/895

Code of Conduct

COC is like a tiny little guillotine of the "open $ource revolution".

Code of conduct (COC), also code of coercion or code of censorship, is a shitty invention of SJW fascists that's
put up in projects (e.g. software) and which declares how developers of a specific project must behave
socially (typically NOT just within the context of the development but also outside of it), generally pushing
toxic woke concepts such as forced inclusivity, exclusivity of people with unapproved political opinions or use
of politically correct language (newspeak). Sometimes a toxic COC hides under a different name such as
social contract, code of "ethics" or mission statement, though not necessarily. COC is typically placed in the
project repository as a CODE_OF CONDUCT file, but some projects (for example Google's Go language)
strategically hide it elsewhere so as to firstly satisfy those who want a COC and trick at least some of those
who don't want it into thinking it's not there -- don't be fooled into thinking this is just a matter of chance, it's
a matter of public relations and marketing teams who make highly calculated decisions about where to place
the COC, how to name the file etc. so as to maximize the number of supporters of the software -- to a
corporation this is a decision more important than for example actual quality of the software. In practice
COCs are used to establish dictatorship and allow things such as kicking people out of development because
of their political opinions expressed anywhere, inside or outside the project, and to push political opinions
through software projects. COCs are an indication of tranny software. See also
http://techrights.org/2019/04/23/code-of-coercion/.

COCs are extremely controversial and opposed by many, for example Alexandre QOliva, one of the top
people at Free Software Foundation, the maintainer of Linux libre who was a serious candidate of the FSF
president, himself identifying as "neurodivergent" and being rather politically correct, has expressed extreme
criticism (here) of forcing a COC into GNU Binutils. He criticized not only forceful push of the decision to put a
COC (they basically just announced it without asking if people agree with it), but also stated very true
observations such as that "[the power of] enforcement and exclusion tends to attract people with
authoritarian leanings" and that he himself feels "vulnerable and unsafe" -- again, someone who basically
plays by the pseudoleftist rules. Expanding on the guillotine comparison, Oliva knows that the French
revolution (and all other revolutions) devoured many of its children, and though he probably feels part of this
revolution, he still criticized the guillotine.

Code of conduct is a purely political statement, its purpose is solely to make a statement that the
project embraces certain harmful political views, it has no legal value because it states things such as "it is
forbidden to harass others", which is something that is already illegal, it doesn't need to be stated. It is as if it
stated "it is forbidden to kill black people" -- of course it is forbidden, it is illegal to kill anyone, the statement
is here probably means something like "you are not welcome if you show hostility towards black people".

{ Also here's some site: https://nocodeofconduct.com/, tho it's not shitting on it hard enough. ~drummyfish }

LRS must never employ any COC, with possible exceptions of anti-COC (such as NO COC) or parody style
COCs, not because we dislike genuine inclusivity, but because we believe COCs are bullshit and mostly
harmful as they support bullying, censorship and exclusion of people.

Anyway it's best to avoid any kind of COC file in the repository, it just takes up space and doesn't serve
anything. We may simply ignore this shitty concept completely. You may argue why we don't ignore e.g.
copyright in the same way and just not use any licenses? The situation with copyright is different: it exists by
default, without a license file the code is proprietary and our neighbors don't have the legal safety to execute
basic freedoms, they may be bullied by the state -- for this we are forced to include a license file to get rid of
copyright. With COC there simply isn't any such implicit issues to be solved (because COCs are simply
inventing their own issues), so we just don't try to solve non-issues.

As of 2024 every mainstream project has a COC -- if it's a collaborative, non-uderground project, you
have to assume it is fascist software until proven otherwise. The only software without COC now are small,
usually one man projects such as suckless and LRS programs.

Should you avoid software with COC? Well, yes if possible, though it's very difficult today, it is forced on

you and more often than not there are no alternatives. A COCed software is not really legally non-free, you
can really fork such project and just delete the COC file, there is no problem in that; the issue is not the file

Code of Conduct LRS Wiki 160/895

itself but more what it signifies -- it indicates a very toxic community around the project and often also
harmful properties of the projects which is most likely tranny software and therefore bloat using shit
languages like Rust etc. Even if you can legally take a copy of the software from the toxic community and
"make it your own", strip it off their propaganda, you probably won't rewrite it from scratch. Even if you do
something with the software you are legally allowed to do, the community may bully you online because
well, they are just toxic. COC is just a sign of trouble to come and a smell of bad technology. Rather seek for
something better.

coding

Coding

Coding nowadays means low quality attempt at programming, usually practiced by soydevs and barely
qualified coding monkeys. Coder is to programmer what a bricklayer is to architect.

Traditionally it means encoding and decoding of information as in e.g. video coding -- this is the only non-gay
meaning of the word

collapse

Collapse

Collapse of our civilization is a concerning scenario in which basic structures of society relatively rapidly fall
apart and cause unusually large, possibly world-wide horrors such as chaos, wars, famine and loss of
advanced technology. It is something that will very likely happen very soon due to uncontrolled growth and
societal decline by capitalism: we, the LRS, are especially focusing on a very probable technological
collapse (caused by badly designed technology as well as its wrong application and extreme overuse
causing dangerous dependencies) but of course clues point to collapse are coming from many directions
(ecological, economical, political, natural disasters such as a coronal mass ejection etc.). Some have said
that a society can deal with one crisis, but if multiple crises hit at once this hit may be fatal; however the
dependence of current society on computer technology is so great that its collapse could be enough to
deliver a fatal blow alone. Recently (around 2015) there has even appeared a specific term collapsology
(also collapse informatics etc.) referring to the study of the potential collapse.

There is a reddit community for discussing the collapse at https://reddit.net/r/collapse. WikiWikiWeb has a
related discussion under ExtinctionOfHumanity.

Collapse of civilizations has been a repeated theme throughout history, it is nothing new or exceptional, see
e.g. Maya empire collapse, Bronze age collapse, the fall of Rome etc. It usually comes when a civilization
reaches high complexity and becomes "spoiled", morally corrupt and socially divided, which may also be
"helped" by technological advancement (e.g. the Bronze age collapse is speculated to have been partially
caused by the new technology of iron which has broken the old established structures) -- basically just what
we are seeing today. Economic interdependence is especially dangerous, and since we are currently living
under extreme form of capitalism, we are extremely subjected to this threat: everyone is hyperspecialized
and so practically no one is self sufficient, people don't know how to make food, build homes, make tools,
factories are unable to produce anything without dozens of other companies providing material, technology
and services for them; everything depends on highly complex and extremely fragile production chains.
Besides dependence on economy, an equal or even greater danger may be our absolute dependence on
computer technology: nothing works without computers and Internet, even that which could and should:
factories, traffic, governments, hospitals, even many basic tools ("smart" ones, "tools as a service", ...). Itis
extremely likely we'll sooner or later sustain a blow that will paralyze the Internet and computers, be it a
natural disaster such as coronal mass ejection, an economic disaster (supply chains collapsing, ...), political
disaster (war, cyber attacks, ...), unintentional or intentional "accident" ("oops, | just turned off all computers
in the world that are running Windows" --Microsoft employee), simple unsustainability of maintenance of the
exponentially growing complexity of computers or anything similar (Al taking over the internet? :1). Thinking
about it deeper, it seems like a miracle we are still here.

Collapse LRS Wiki 161/895

In technological world more and more people are concerned about the collapse, notably e.g. the Collapse
0OS/Dusk OS, operating systems meant to run on simple hardware after the technological supply chain
collapses and renders development of modern computers impossible. Collapse technology has its specific
focus and areas of interest, for example bootstrapping (a kind of self containment that allows the technology
to set itself up), self hosting, simplicity, repairability, durability, offline work, low power consumption, usage
of improvised parts (see e.g. salvage computing). Collpase OS website predicted the collapse would happen
before 2030. The chip shortage, financial, climatic and energetic crisis and beginning of war in Europe as of
early 2020s are one of the first warnings showing how fragile the systems really is. { | also believe it to be
most probable the collapse will come before 2030, but of course there is still a good chance it will be another
decade or two late, this is impossible to predict with accuracy. In any case we have to get ready as soon as
possible. ~drummyfish }

Ted Kaczynski (a famous primitivist mathematician that committed mass murderer to warn about the decline
of society due to complex technology) has seen the collapse as a possible option. Internet bloggers/vlioggers
such as Luke Smith and no phone man advocate (and practice) simple, independent off-grid living, possibly
to be prepared for such an event. Even proprietary normies like Jonathan Blow warn of a coming disaster (in
his talk Preventing the Collapse of Civilization). Viznut is another programmer warning about the collapse.

The details of the collapse cannot of course be predicted exactly -- it may come in a relatively quick, violent
form (e.qg. in case of a disaster causing a blackout) or as a more agonizing slow death. CollapseOS site talks
about two stages of the slow collapse: the first one after the collapse of the supply chain. i.e. when the
production of modern computers halts, and the second (decades after) when the last modern computer stops
working. It most likely won't happen overnight -- that's a very extreme case. A typical collapse may take
decades during which all aspects of society see a rapid decline. Of course, a collapse doesn't mean extinction
of humans either, just deaths of many and great losses of what has been achieved culturally and
technologically.

There also appeared a new area of study, so called salvage computing, which instead of trying to find ways
to designh new technology better (without discouraging this of course) rather focuses on making use on
what's already been produced, i.e. even potentially "bad" technology which is already around and just
became artificially obsolete. This is not in conflict with trying to design new and better technology, just
additionally trying to maximize the use of what's already there.

{ I've read a book called Blackout by Marc Elsberg whose story revolves around a fictional large collapse of
power supply in Europe. A book called The World Without Us explores what the world would look like if
humans suddenly disappeared. Also the podcast called Fall of Civilizations by Paul Cooper is awesome.
~drummyfish }

Live Documenting The Current Collapse Of Our Civilization

This section will record the current in-progress collapse of our civilization as seen by me, drummyfish. It may
serve later generations and historians, as | know any information left behind is important for avoiding
repeating the mistakes, though I also know you will not learn and will repeat the mistakes anyway. A man
can dream | guess. If you can take away just one thing though, please be it this: FOR THE LOVE OF GOD,
DO NOT EVER ALLOW COMPETITION TO BE THE BASE OF SOCIETY AGAIN.

Late 2022 Report

It seems like the collapse may have already begun. After the worldwide Covid pandemic the Russia-Ukraine
war has begun with talks of nuclear war already going on. A great economic crisis has begun, possibly as a
result of the pandemic and the war, inflation is skyrocketing and breaking all records, especially gas and
energy prices are growing to extremes and as a result basically prices of everything go up as well. Russia
isolated itself, new cold war has begun. Many big banks have gone bankrupt. War immigrants from Ukraine
are flooding into Europe and European fascists/nationalists seem to be losing their patience about it. People
in European first world countries are now actually concerned about how not to freeze during the winter, this
talk is all over TV and radio. The climate disaster has also started to show, e.g. in Czech Republic there was
the greatest forest fire in its history as well an extremely hot summer, even tornados that destroyed some
villages (tornados in this part of world are basically unheard of), winters have almost no snow unlike some
two decades ago. Everything is shitty, food costs more and is of much lower quality as basically everything

Collapse LRS Wiki 162/895

else, newly bought technology cannot be expected to last longer than a few months. Society is spoiled to an
unimaginable level, extreme hostility, competition and aggressive commerce is everywhere, kids are
addicted to cellphones and toxic social media, mental health of population rapidly deteriorates. Art such as
movies and music is of extremely low quality, people hate every single new movie or video game that comes
out. A neofascist party has won elections in Italy, in Czech Republic all socialist parties were eliminated from
the parliament: only capitalists rule now -- all social securities are being cancelled, people are getting poorer
and poorer and forced to work more and to much higher ages. Ads are everywhere and equate psychological
torture. The situation now definitely seems extremely bad.

Late 2023 Report

Yep, the collapse is happening. All previously mentioned issues just deepen, though | stopped watching the
news and just avoid the negative info to enjoy the last few years | have on this Earth without much stress.
Russian-Ukraine war is still happily ongoing (despite all the predictions that Russia will soon run out of
resources lol) AND there is a brand new war in Israel, new immigrants are gonna flood Europe, then USA is
probably gonna invade the weakened countries or something. Al is currently breaking the Internet, Gooagle
became absolutely unusable which became noticeable even by normies now, it is just flooded by Al articles,
news are an endless pile of Al generated nonsense. Technology is yet much worse than before, NOTHING
now works without latest consumerist hardware, subscriptions and accounts, | started just buying old paper
books and am thinking about abandoning computers altogether. USA culture is here like cancer, TV is littered
SOLELY with political propaganda (SUPPORT MUH UKRAINE TAKE COVID VAX SUPPORT UR COUNTRYS
ENCONOMMMMMMMMIE FUGHTTTTT RAACEEEEEESSSIIIIIIIIIIIIISSSSAMMMM) taking turns with capitalist
propaganda (ads, literally just people screaming BUY BUY BUY THIS FUCKING SHIT RIGHT NOW, BUY BUY
BUYIT BUY IT BUUUUUUUUUY CONSOOOOOOOOOOOME THIIIS
CONSO0O0000000000000000000O0OOO0000O0000000000OOMMMMMMMMMMMMMME). Watching it
for 5 minutes literally makes you kill yourself. Hmm what else. NOTHING WORKS lol, you buy something, it is
already broken, you pay for repair, they take money and return it unrepaired LMAO :D | am not kidding, it is
literally the norm now, my bosses business is sinking due to all machines just breaking. Absolutely
unqualified people now do all the jobs lol, there are literally teachers who CANNOT READ OR WRITE correctly,
they just use Google to check how everything's spelled (I am NOT kidding, | have this from first hand
sources). "Programmers" literally can't program, they just use Al. People are generally braindead, controlled
by religions such as economy worship, productivity cult, women fascism (it has been officially declared now
that women are physically stronger than man AND also smarter LMAO, every movie is obliged by law to
include a scene where this is confirmed). | dunno man, this can't last much longer than a few years.

See Also

e capitalist singularity

collision_detection

Collision Detection

Collision detection is an essential problem e.g. of simulating physics of mechanical bodies in physics engines
(but also elsewhere), it tries to detect whether (and also how) geometric shapes overlap. Here we'll be
talking about the collision detection in physics engines, but the problem appears in other contexts too (e.g.
frustum culling in computer graphics). Collision detection potentially leads to so called collision resolution, a
different stage that tries to deal with the detected collision (separate the bodies, update their velocities,
make them "bounce off"). Physics engines are mostly divided into 2D and 3D ones so we also normally either
talk about 2D or 3D collision detection (3D being, of course, a bit more complex).

There are two main types of collision detection:

e discrete: Detecting collisions only at one point in time (each engine tick or "frame") -- this is easier
but can result in detecting the collisions in wrong ways or missing them completely (imagine a fast
flying object that in one moment is wholly in front of a wall and at the next instant wholly behind it).
Nevertheless this is completely usable, one just has to be careful enough about the extreme cases.

e continuous: Detecting collisions considering the continuous motion of the bodies (still done at

Collision Detection LRS Wiki 163/895

discrete ticks but considering the whole motion since the last tick) -- this is more difficult to program
and more costly to compute, but also correctly detects collisions even in extreme cases. Sometimes
engines perform discrete detection by default and use continuous detection in special cases (e.g.
when speeds become very high or in other error-prone situations). Continuous detection can be
imagined as a collision detection of a higher dimensional bodies where the added dimension is time --
e.g. detecting collisions of 2D circles becomes detecting collisions of "tubes" in 3D space. If you don't
want to go all the way to implementing continuous collisions, you may consider an in-between
solution by detecting collisions in smaller steps (which may also be done only sometimes, e.g. only for
high speed bodies or only when an actual discrete collision is detected).

Collision detection is non-trivial and in many cases really hard because we need to detect NOT JUST the
presence of the collision but also its parameters which are typically the exact point of collision, collision
depth and collision normal (but potentially also other ones, depending on what we're doing, e.g. volume
of overlap etc.) -- these are needed for subsequently resolving the collision (typically the bodies will be
shifted along the normal by the collision depth to become separated and impulses will be applied at the
collision point to update their velocities). We also need to detect general cases, i.e. not just collisions of
surfaces but of WHOLE VOLUMES (imagine e.g. a tiny cuboid inside an arbitrarily rotated bigger cone). This is
very hard and/or expensive for some complex shapes such as general 3D triangle meshes (which is why we
approximate them with simpler shapes), but even for relatively simple shapes like arbitrarily rotated 3D
boxes the solution is not easy. We also want the detection algorithm to be at least reasonably fast -- for this
reason collision detection mostly happens in two phases:

¢ broad phase: Quickly estimates which bodies MAY collide, usually with bounding volumes (such as
spheres or axis alighed bounding boxes) or space indexing and algorithms such as sweep and prune.
This phase quickly opts-out of checking collision of objects that definitely CANNOT collide because
they're e.g. too far away.

e narrow phase: Applying the precise, expensive collision detection on the potentially colliding pairs of
bodies determined in the broad phase. This yields the real collisions.

In many cases it is also important to correctly detect the order of collisions in time -- it may well happen a
body collides not with one but with multiple bodies at the time of collision detection and the computed
behavior may vary widely depending on the order in which we consider them. Imagine that body A is
colliding with body B and body C at the same time; in real life A may have first collided with B and be
deflected so that it would have never hit C, or the other way around, or it might have collided with both. In
continuous collision detection we know the order as we also have exact time coordinate of each collision
(even though the detection itself is still computed at discrete time steps), i.e. we know which one happened
first. With discrete collisions we may use heuristics such as the direction in which the bodies are moving, but
this may fail in certain cases (consider e.g. collisions due to rotations).

On shapes: general rule is that mathematically simpler shapes are better for collision detection.
Spheres (or circles in 2D) are the best, they are stupidly simple -- a collision of two spheres is simply decided
by their distance (i.e. whether the distance of their center points is less that the sum of the radia of the
spheres), which also determines the collision depth, and the collision normal is always aligned with the
vector pointing from one sphere center to the other. So if you can, use spheres -- it is even worth using
multiple spheres to approximate more complex shapes if possible. Capsules ("extruded spheres"), infinite
planes, half-planes, infinite cylinders (distance from a line) and axis-aligned boxes are also pretty simple.
Cylinders and cuboids with arbitrary rotation are bit harder. Triangle meshes (the shape most commonly
used for real-time 3D models) are very difficult but may be approximated e.g. by a convex hull which is
manageable (a convex hull is an intersection of a number of half-spaces) -- if we really want to precisely
collide full 3D meshes, we may split each one into several convex hulls (but we need to write the non-trivial
splitting algorithm of course). Also note that you need to write a detection algorithm for any possible pair of
shape types you want to support, so for N supported shapes you'll need N * (N + 1) / 2 detection algorithms.

{ In theory we may in some cases also think about using iterative/numerical methods to find collisions, i.e.
starting at some point between the bodies and somehow stepping towards their intersection until we're close
enough. Another idea | had was to use signed distance functions for representing static environments, | kind
of implemented it in tinyphysicsengine. ~drummyfish }

TODO: some actual algorithms

Collision Detection LRS Wiki 164/895

collision

Collision

Collision, sometimes also conflict, happens when two or more things want to occupy the same spot. This
situation usually needs to be addressed somehow; then we talk about collision resolution. In programming
there are different types of collisions, for example:

¢ hash collision: When two items produce the same hash, they will map to the same index in a hash
table. Typical solution is to have a list at each table index so that multiple items can fit there.

¢ collision of bodies in a physics engine: See collision_detection. These collision are resolved by
separating the bodies and updating their velocities so that they "bounce off" as in real life.

e request collision: General situation in which multiple clients request access to something that can
be used only by one client at a time, e.g. a communication bus. Resolution is usually done by some
kind of arbiter who decides, by whatever algorithm, who to grant the access to.

e name collision: When e.g. the same identifier is used in two separate libraries that are included at
the same time, the compiler doesn't know which one is intended. This is addressed by namespaces.

color

Color

Color (also colour, from celare, "to cover") is the perceived visual quality of light that's associated with its
wavelength/frequency (or mixture of several); for example red, blue and yellow are colors. Electromagnetic
waves with wavelength from about 380 to 750 nm (about 400 to 790 THz) form the visible spectrum, i.e.
waves our eyes can see -- combining such waves with different intensities and letting them fall on the retina
of our eyes gives rise to the perception of color in our brain. There is a hugely deep color theory concerned
with the concept of color (its definition, description, reproduction, psychological effect etc.). Needless to say
colors are extremely important in anything related to visual information such as art, computer graphics,
astrophysics, various visualizations or just everyday perception of our world. Color support is sometimes
used as the opposite of systems that are extremely limited in the number of colors they can handle, which
may be called monochromatic, 1bit (distinguishing only two colors), black&white or grayscale. Color can be
seen to be in the same relation to sight as pitch is to hearing.

How many colors are there? The number of colors humans can distinguish is of course individual (color
blindness makes people see fewer colors but there are also conditions that make one see more colors), then
also we can ask what color really means (see below) but -- approximately speaking -- various sources state
we are able to distinguish millions or even over 10 million different colors on average. In computer
technology we talk about color depth which says the number of bits we use to represent color -- the more
bits, the more colors we can represent. 24 bits are nowadays mostly used to record color (8 bits for each red,
green and blue component, so called true color), which allows for 16777216 distinct colors, though even
something like 16 bits (65536 colors) is mostly enough for many use cases. Some advanced systems
however support many more colors than true color, especially extremely bright and dim ones -- see HDR.

What gives physical objects their color? Most everyday objects get its color from reflecting only specific
parts of the white light (usually sunlight), while absorbing the opposite part of the spectrum, i.e. for example
a white object reflects all incoming light, a black one absorbs all incoming light (that's why black things get
hot in sunlight), a red one reflects the red light and absorbs the rest etc. This is determined by the qualities
of the object's surface, such as the structure of its atoms or its microscopic geometry.

TODO

What Is Color?

This is actually a non-trivial question, or rather there exist many varying definitions of it and furthermore it is
a matter of subjective experience, perception of colors may differ between people. When asking what color
really is, consider the following:

Color LRS Wiki 165/895

¢ Are non-primary colors true colors, or just mixtures of the primary colors? Red, green and blue are the
three primary colors, the ones we can mix all other colors from. Many will say yes, non-primary colors
are colors. But hold on.

¢ Are non-spectral colors colors or just mixtures of spectral colors? Spectral colors are the colors with a
single wavelength (e.g. red, orange or violet), other colors (like pink) are just mixtures of these. Again,
probably yes.

¢ |s saturation part of color, or a separate attribute? l.e. are e.g. green and greenish gray different
colors, or same colors with different saturation? Now it depends.

¢ |s black a color, or rather a lack of a color? E.g. in computers it is usually treated just as another color,
but real world black is really the absence of any light.

¢ [s white a color? If we are using a subtractive color model, the argument is the same as for black
(white paper is really just lack of any color on it).

¢ [s e.g. gold a color? Or just yellow with a lot of specular reflection? In real world many things may be
called to have a gold color, but in computer graphics we would likely separate the color from the light
reflective attribute (such as metalicity).

e |s transparent a color?

¢ |s intensity part of color (especially in context of e.g. HDR)? For example we might say both Sun and
paper are white, but still Sun's color is much "stronger" -- is it therefore a "whiter white" than that of a
paper?

¢ Are colors not perceivable by average human colors? Many animals see colors we can't see (e.qg.
those in infrared spectrum), but there are also rare cases of humans (so called tetrachromats) who
see many more colors than usual thanks to a mutation.

¢ Are impossible colors colors? Interestingly there exist colors perceivable by average humans which
however cannot naturally be seen due to "physics" -- they can however be seen with "eye hacks". Do
we count these too?

combinatorics

Combinatorics

Combinatorics is an area of math that's basically concerned with counting possibilities. As such it is very
related to probability theory (as probability is typically defined in terms of ratios of possible outcomes). It
explores things such as permutations and combinations, i.e. question such as how many ways are there to
order N objects or how many ways are there to choose k objects from a set of N objects.

The two basic quantities we define in combinatorics are permutations and combinations.

Permutation (in a simple form) of a set of objects (lets say A, B and C) is one possible ordering of such set
(i.e. ABC, ACB, BAC etc.). l.e. here by permutation of a number n, which we'll write as P(n), we mean the
number of possible orderings of a set of size n. So for example P(1) = 1 because there is only one way to
order a set containing one item. Similarly P(3) = 6 because there are six ways to order a set of three objects
(ABC, ACB, BAC, BCA, CAB, CBA). P(n) is computed very simply, it is factorial of n, i.e. P(n) = n!.

Combination (without repetition) of a set of objects says in how many ways we can select given number of
objects from that set (e.qg. if there are 4 shirts in a drawer and we want to choose 2, how many possibilities
are there?). l.e. given a set of certain size a combination tells us the number of possible subsets of certain
size. l.e. there are two parameters of a combination, one is the size of the set, n, and the other is the number
of items (the size of the subset) we want to select from that set, k. This is written as nCk, C(n,k) or

/ n\

I I
\ k/

A combination is computed as C(n,k) = n! / (k! * (n - k)!). E.g. having a drawer with 4 shirts (A, B, C and D)
and wanting to select 2 gives us C(4,2) = 4! /(2! * (4 - 2)!) = 6 possibilities (AB, AC, AD, BC, BD, CD).

Furthermore we can define combinations with repetitions in which we allow ourselves to select the same

item from the set more than once (note that the selection order still doesn't matter). l.e. while combinations
without repetition give us the number of possible subsets, a combinations WITH repetitions gives us the

Combinatorics LRS Wiki 166/895

number of possible multisubsets of a given set. Combinations with repetition is computed as Cr(n,k) = C(n +
k - 1,k). E.g. having a drawer with 4 shirts and wanting to select 2 WITH the possibility to choose one shirt
multiple times gives us Cr(4,2) = C(5,2) = 5! /(2! * (5 - 2)!) = 10 possibilities (AA, AB, AC, AD, BB, BC, BD,
CC, CD, DD).

Furthermore if we take combinations and say that order matters, we get generalized permutations that also
take two parameters, n and k, and there are two kinds: without and with repetitions. l.e. permutations
without repetitions tell us in how many ways we can choose k items from n items when ORDER MATTERS,
and is computed as P(n,k) = n!/(n - k)! (e.q. P(4,2) = 4!/(4 - 2)! = 12, AB, AC, AD, BA, BC, BD, CA, CB, CD, DA,
DB, DC). Permutations with repetitions tell us the same thing but we are allowed to select the same thing
multiple times, it is computed as Pr(n,k) = n"k (e.g. P(4,2) = 472 = 16, AA, AB, AC, AD, BA, BB, BC, BD, CA,
CB, CC, CD, DA, DB, DC, DD).

To sum up:

qguantity order matters? repetition allowed? formula
permutation (simple) yes P(n) = n!
permutation without rep. yes no P(n,k) = n!/(n - k)!
permutation with rep. yes yes Pr(n,k) = n™k
combination without rep. no no C(n,k) =n!'/(k!'*(n-k)")
combination with rep. no yes Cr(n,k) =C(n + k-1,k)

Here is an example of applying all the measures to a three item set ABC (note that selecting nothing from a
set counts as 1 possibility, NOT 0):

quantity possibilities (for set ABC) count

P(3) ABC ACB BAC BCA CAB CBA 3'=6

P(3,0) 3/3-0)!' =1
P(3,1) ABC 3Y3-1)!'=3
P(3,2) AB ACBABCCACB 31/(3-2)1=6
P(3,3) ABC ACB BAC BCA CAB CBA 31/(3-3)1=6
Pr(3,0) 370 =

Pr(3,1) ABC 371 =3

Pr(3,2) AAABACBABBBCCACBCC 372 =9

Pr(3,3) AAA AAB AAC ABA ABB ABC ACA ACB ACC ... 373 =27

C(3,0) 3/(0*(3-0)) =1
C(3,1) ABC 3(r*3-1)H) =3
C(3,2) ABACBC /(21 *(3-2)1) =3
C(3,3) ABC 33 *(3-3)H) =1
Cr(3,0) C3+0-1,0) =
Cr(3,1) ABC C3+1-1,1)=
Cr(3,2) AAABACBBBCCC C3+2-1,2)=
Cr(3,3) AAA AAB AAC ABB ABC ACCBBBBBCBCCCCC C(3+3-1,3)=10
comment

Comment

Comment is a part of computer code that doesn't affect how the code is interpreted by the computer and is
intended to hold information for humans that read the code (even though comments can sometimes contain
additional information for computers such as metadata and autodocumentation information). There are
comments in basically all programming languages, they usually start with //, #, /* and similar symbols,
sometimes parts of code that don't fit the language syntax are ignored and as such can be used for
comments (e.g. in Brainfuck anything that's not a command character is ignored).

Comment LRS Wiki 167/895

While yes, you should write nice, self documenting code, you should comment you source code as well.
General tips on commenting:

¢ ALWAYS put a global file comment at the top of a file to make it self-contained. It should include:

¢ Description of what the file actually does. This is extremely important for readability,
documentation and quick orientation. If a new programmer comes looking for a specific part of
the code, he may waste hours on searching the wrong files just because the idiotic author
couldn't be bothered to include fucking three sentences at the start of the file. Modern
program just don't fucking do this anymore, this is just shit.

¢ License/waiver, either full text or link. Even if your repo contains a global license (which it
should), it's good for the file to carry the license because the file may just be copy pasted on
its own into some other project and then it will appear as having no license.

+ Name/nick of the author(s) and roughly the date of creation (year is enough). This firstly
helps legally assess copyright (who and for how long holds the copyright) and secondly helps
others contact the author in case of encountering something weird in the code.

e Comment specific blocks of code with keywords -- this will help searching the code with tools like
arep. E.g. in game's code add comment // player: shoot, fire to the part of code that handles
player's shooting so that someone searching for any one of these two words will be directed here.

¢ Be brief, don't write poetry, too much text and pompous style will make it less readable.

¢ Functions (maybe with some exceptions like trivial one-liners) should come with a comment
documenting:

+ Behavior of the function, what it does and also how it does that (Is the function slow? Is it
safe? Does it perform checks of arguments? Does it have side effects? How are errors
handled? ...).

¢+ Meaning of all arguments and if needed their possible values.

+ Return value meaning.

¢ You may decide to use comment format of some autodoc system such as doxygen -- it costs nothing
and helps firstly unify the style of your comments and secondly, obviously, generate automatic
documentation of your code, as well as possibly automatically process it in other ways.

¢ TODO: moar

Way too many comments are sometimes considered bad, there shouldn't be more comments than code,
unless maybe in some super complex assembly program :) There also seem to be controversial opinions
around about comments being essentially harmful at least to a degree, for example Jonathan Blow said that
"comments are code that never runs and code that never runs has bugs" { | think that's a bit misleading --
comments are never run by a computer but they are run by the brain, a kind of neural network that is
tolerant to many bugs, so a comment that's been read by a few people who didn't find anything wrong about
it is kind of tested. Besides that by definition the purpose of a comment is not to define algorithms,
comments aren't code or at least shouldn't take such role, they're there for other purposes, e.g. declaring
intent, putting a reference to something and so on. ~drummyfish }.

communism

Communism

"Imagine no possession" --John Lennon

Communism (from communis -- common, shared) is a very wide term which most generally stands for the
idea that sharing and equality should be the basic values and principles of a society; as such it is a |eftist
idea which falls under socialism (i.e. basically focusing on people at large). There are very many branches,
theories, political ideologies and schools of thought somewhat based on communism, for example Marxism,
Leninism, anarcho communism, primitive communism, Christian communism, Buddhist communism etc. -- of
course, some of these are good while others are evil and only abuse the word communism as a kind of brand
(as also happens e.g. with anarchism). Sadly after the disastrous failure of the violent pseudocommunist
revolutions of the 20th century, most people came to equate the word communism with oppressive militant
regimes, however we have to stress that communism is NOT equal to USSR, Marxism-Leninism,
Stalinism or any other form of pseudocommunism, on the contrary such regimes were rather
hierarchical, nonegalitarian and violent, we might even say downright fascist. We ourselves embrace true
communism and build our LRS and less retarded society on ideas of unconditional sharing. Yes, large

Communism LRS Wiki 168/895

communist societies have existed and worked, for example the Inca empire worked without money and
provided FREE food, clothes, houses, health care, education and other products of collective work to
everyone, according to his needs. Many other communities also work on more or less communist principles,
see e.g. Jewish kibbutz, Sikhist langar, free software, or even just most families for that matter. Of course, no
one says the mentioned societies and groups are or were ideal, just that the principles of communism DO
work, that communism should be considered a necessary attribute of an ideal society and that ideal society
is not impossible due to impossibility of communism because as we see, it is indeed possible. The color red is
usually associated with communism and the "hammer and sickle" (U+262D) is taken as its symbol, though
that's mostly associated with the evil communist regimes and so its usage by LRS supporters is probably
better be avoided.

Common ideas usually associated with communism are (please keep in mind that this may differ depending
on the specific flavor of communism):

¢ Ending capitalism and similar rightist oppressive hierarchical systems which are the polar opposite of
communism and are incompatible with it. Along with these also things like consumerism, worker
exploitation, crime and poverty will disappear.

¢ Abolishment of private property, establishing common ownership, for example a factory shouldn't
have a single owner who makes profit off of it, it should rather be collectively managed by those who
work in the factory and they should collectively share what they make there.

¢ Sharing and collaboration as opposed to competition.

¢ Equality, seizing of division of people into social classes (such as workers, bourgeoisie, rich, poor,
aristocracy, ...).

¢ Eventual abolishment of state, as again in a good society that benefits people there shouldn't be any
crime, theft, abuse of workers etc. However some "communists" see state and its control of economy
as a necessary intermediate step towards this goal.

¢ Abolishment of money as that is a means of dividing people into classes (rich and poor), means of
abuse (wage slavery) and a tool of systems such as capitalism. In a good society money is
unnecessary, everyone gets what he needs.

e Sometimes revolution (and even war, temporary dictatorship etc.) is seen by some "communists" as a
necessary way of achieving a change, however many others oppose this as revolution means
violence, dominating man by another man (inequality) etc. -- peaceful voluntary evolutionary
approach is also an option of achieving communism.

¢ Focus on workers and common people.

¢ Intellectual endeavor and idealism -- many communists are intellectuals, scientifically examining
society and seeking models of an ideal society, a "utopia" as opposed to accepting life in a dystopia.

TODO
See Also
¢ less retarded society
e socialism
e Morea[][Js Utopia
e capitalism
competition
Competition

Competition is a situation of conflict in which several entities try to overpower or otherwise win over each
other. It is the opposite of collaboration. Competition is connected to pursuing self interest.

Competition is the absolute root cause of most evil in society. Society must never be based on
competition. Unfortunately our society has decided to do the exact opposite with capitalism, the
glorification of competition -- this will most certainly lead to the destruction of our society, possibly even to
the destruction of all life.

Competition LRS Wiki 169/895

Competition is to society what a drug is to an individual: competition makes a situation become better
quickly and start achieving technological "progress" but for the price of things going downwards from then
on, competition quickly degenerates and kills other values in society such as altruism and morality; society
that decides to make unnaturally fast "progress" and base itself on competition is equivalent to someone
deciding to take steroids to grow muscles quickly -- corporations that arise in technologically advanced
society take over the world just like muscle cancer that grows from taking steroids. A little bit of competition
can be helpful in small doses just as painkillers can on occasion help lower suffering of an individual, but one
has to be extremely careful to not take too many of them... even smoking a joint from time to time can have
a positive effect, however with capitalism our society has become someone who has started to take heroin
and only live for that drug alone, take as much of it as he can. Invention of bullshit jobs just to keep
competition running, extreme growing hostility of people, productivity cults, overworking, wage slavery,
extreme waste that's destroying our environment, all of these are signs our society is dying from overdose,
living from day to day, trying to get a few bucks for the next dose of its drug.

Is all competition bad? As a mechanism in society yes. But as concept outside these boundaries it may on
occasion be good, it may for example be used in genetic programming to evolve good computer programs.
People also have a NEED for at least a bit of competition as this need was necessary to survive in the past
and is hard wired in us -- this need has to be satisfied, so we create artificial, mostly harmless competition
e.g. with games and sports -- please note that people playing games doesn't mean competition is part of
basic mechanics of society (this overlook in the thought process often happens), just as singing in a shower
isn't part of how democracy works for example. This kind of competition happening between people (but not
withing mechanisms of society) is not so bad as long as we are aware of the dangers of overapplying it (just
as we have to be careful with any kind of drug for example). What IS bad is making competition the basis of
a society, in a good society people must never compete for basic needs such as food, shelter or health care.
People must never see other people as enemies. Furthermore after sufficient technological progress,
competition is no longer just a bad basis for society, it becomes a fatal one because society gains means for
complete annihilation of all life such as nuclear weapons or factories poisoning our environment that in the
heat of competition will sooner or later destroy the society. l.e. in a technologically advanced society it is
necessary to give up competition so as to prevent own destruction. Sadly we are probably past the point
now.

Why is competition so prevalent if it is so bad? Because it is natural and it has been with us since we as life
came to existence. It is immensely difficult to let go of such a basic instinct but it has to be done not only
because competition has become obsolete and is now only artificially sustaining suffering without bringing in
any benefits (we, humans, have basically already won at evolution), but because, as has been said,
sustaining competition is now simply fatal.

How to achieve letting go of competition in society? The only way is a voluntary choice achieved through our
intellect, i.e. through education. Competition is something we naturally want to do, but we can rationally
decide not to do it once we see and understand it is bad -- such behavior is already occurring, for example if
we know someone is infected with a sexually transmitting disease, we rationally overcome the strong natural
instinct to have sex with him.

compiler_bomb

Compiler Bomb

Compiler bomb is a type of software bomb (similar to fork bombs, zip bombs, tar bombs etc.) exploiting
compilers, specifically it's a short program (written in the compiler's programming language) which when
compiled produces an extremely large compiled program (i.e. executable binary, bytecode, transpiled code
etc.). Effectiveness of such a bomb can be measured as the size of output divided by the size of input. Of
course compiler bombs usually have to be targeted at a specific compiler (its weaknesses, optimizations,
inner mechanisms, ...), the target platform and so on, however some compiler bombs are quite universal as
many compilers employ similar compiling strategies and produce similar outputs. Alternatively a compiler
bomb can be defined to do other malicious things, like maximizing the amount of RAM and time needed for
compilation etc.

{ Found here: https://codegolf.stackexchange.com/questions/69189/build-a-compiler-bomb. ~drummyfish }

Compiler Bomb LRS Wiki 170/895

Compiler bombs in various languages:

eC:main[-1u]={1};, creates 16 GB executable, works by defining a huge array an initializes its first
element so the whole array will be explicitly stored in the executable.

e Rust: every program :D

e comun: TODO :-}

complexity

Complexity
Complexity may stand for several things, for example:

¢ opposite of simplicity, general complexity of technology, see e.g. bloat
e computational complexity, mathematical study of computer resource usage

compression

Compression

Compression means encoding data (such as images or texts) in a different way so that the data takes less
space (memory) while keeping all the important information, or, in plain terms, it usually means "making files
smaller". Compression is pretty important so that we can utilize memory or bandwidth well -- without it our
hard drives would be able to store just a handful of videos, internet would be slow as hell due to the gigantic
amount of transferred data and our RAM wouldn't suffice for things we normally do. There are many
algorithms for compressing various kinds of data, differing by their complexity, performance, efficiency of
compression etc. The reverse process to compression (getting the original data back from the compressed
data) is called decompression. The ratio of the compressed data size to the original data size is called
compression ratio (the lower, the better). The science of data compression is truly huge and complicated
AF, here we'll just mention some very basics. Also watch out: compression algorithms are often a patent
mine field.

{ I've now written a tiny LRS compression library/utility called shitpress, check it out at
https://codeberg.org/drummyfish/shitpress. It's fewer than 200 LOC, so simple it can nicely serve educational
purposes. The principle is simple, kind of a dictionary method, where the dictionary is simply the latest
output 64 characters; if we find a long word that occurred recently, we simply reference it with mere 2 bytes.
It works relatively well for most data! ~drummyfish }

{ There is a cool compressing competition known as Hutter Prize that offers 500000 pounds to anyone who
can break the current record for compressing Wikipedia. Currently the record is at compressing 1GB down to
115MB. See http://prize.hutterl.net for more. ~drummyfish }

{ LMAQ retard patents are being granted on impossible compression algorithms, see e.g.
http://gailly.net/05533051.html. See also Sloot Digital Coding System, a miraculous compression algorithm
that "could store a whole movie in 8 KB" lol. ~drummyfish }

Let's keep in mind compression is not applied just to files on hard drives, it can also be used e.g. in RAM to
utilize it more efficiently.

Why don't we compress everything? Firstly because compressed data is slow to work with, it requires
significant CPU time to compress and decompress data, it's a kind of a space-time tradeoff (we gain more
storage space for the cost of CPU time). Compression also obscures data, for example compressed text file
will typically no longer be human readable, any code wanting to work with such data will have to include the
nontrivial decompression code. Compressed data is also more prone to corruption because redundant
information (which can help restoring corrupted data) is removed from it -- in fact we sometimes purposefully
do the opposite of compression and make our data bigger to protect it from corruption (see e.g. error

Compression LRS Wiki 171/895

correcting codes, RAID etc.). And last but not least, many data can hardly be compressed or are so small it's
not even worth it.

The basic division of compression methods is to:

¢ lossless: No information contained in the original data will be lost in the compressed data, i.e. the
original file can be restored in its entirety from the compressed file.

¢ lossy: Some information contained in the original data is lost during compression, i.e. for example a
compressed image will be of slightly worse quality. This usually allows for much greater compression.
Lossy compressors usually also additionally apply lossless compression as well.

Furthermore we may divide compression e.qg. to offline (compresses a whole file, may take long) and
streaming (compressing a stream of input data on-the-go and in real-time), by the type of input data (binary,
text, audio, ...), basic principle (RLE, dictionary, "Al", ...) etc.

The following is an example of how well different types of compression work for an image (screenshot of
main page of Wikimedia Commons, 1280x800):

{ Though the website screenshot contained also real life photos, it still contained a lot of constant color areas
which can be compressed very well, hence quite good compression ratios here. A general photo won't be
compressed as much. ~drummyfish }

compression ~size (KB) ratio
none 3000 1
general lossless (1z4) 396 0.132
image lossless (PNG) 300 0.1
image lossy (JPG), nearly indistinguishable quality 164 0.054
image lossy (JPG), ugly but readable 56 0.018

Mathematically there cannot exist a lossless compression algorithm that would always reduce the size of any
input data -- if it existed, we could just repeatedly apply it and compress ANY data to zero bytes. And not
only that -- every lossless compression will inevitably enlarge some input files. This is also
mathematically given -- we can see compression as simply mapping input binary sequences to output
(compressed) binary sequences, while such mapping has to be one-to-one (bijective); it can be simply shown
that if we make any such mapping that reduces the size of some input (maps a longer sequence to a shorter
one, i.e. compresses it), we will also have to map some short code to a longer one. However we can make it
so that our compression algorithm enlarges a file at most by 1 bit: we can say that the first bit in the
compressed data says whether the following data is compressed or not; if our algorithm fails to reduce the
size of the input, it simply sets the bit to says so and leaves the original file uncompressed (in practice many
algorithms don't do this though as they try to work as streaming filters, without random access to data,
which would be needed here).

Dude, how does compression really work tho? The basic principle of lossless compression is removing
redundancy (correlations in the data), i.e. that which is explicitly stored in the original data but doesn't
really have to be there because it can be reasoned out from the remaining data. This is why a completely
random noise can't be compressed -- there is no correlated data in it, nothing to reason out from other parts
of the data. However human language for example contains many redundancies. Imagine we are trying to
compress English text and have a word such as "computer" on the input -- we can really just shorten it to
"computr" and it's still pretty clear the word is meant to be "computer" as there is no other similar English
word (we also see that compression algorithm is always specific to the type of data we expect on the input --
we have to know what nature of the input data we can expect). Another way to remove redundancy is to e.g.
convert a string such as "HELLOHELLOHELLOHELLOHELLO" to "5xHELLO". Lossy compression on the other
hand tries to decide what information is of low importance and can be dropped -- for example a lossy
compression of text might discard information about case (upper vs lower case) to be able to store each
character with fewer bits; an all caps text is still readable, though less comfortably. A deeper view of
compression oftentimes leads to a realization that compression is really a problem of artificial intelligence,
for compression is really about prediction and prediction is about understanding -- this is where
state-of-the-art view stands.

Compression LRS Wiki 172/895

{ A quick intuitive example: encyclopedias almost always have at the beginning a list of abbreviations they
will use in the definition of terms (e.g. "m.a. -> middle ages", ...), this is so that the book gets shorter and
they save money on printing. They compress the text. ~drummyfish }

OK, but how much can we really compress? Well, as stated above, there can never be anything such as
a universal uber compression algorithm that just makes any input file super small -- everything really
depends on the nature of the data we are trying to compress. The more we know about the nature of the
input data, the more we can compress, so a general compression program will compress only a little, while
an image-specialized compression program will compress better (but will only work with images). As an
extreme example, consider that in theory we can make e.g. an algorithm that compresses one
specific 100GB video to 1 bit (we just define that a bit "1" decompresses to this specific video), but it will
only work for that one single video, not for video in general -- i.e. we made an extremely specialized
compression and got an extremely good compression ratio, however due to such extreme specialization we
can almost never use it. As said, we just cannot compress completely random data at all (as we don't know
anything about the nature of such data). On the other hand data with a lot of redundancy, such as video, can
be compressed A LOT. Similarly video compression algorithms used in practice work only for videos that
appear in the real world which exhibit certain patterns, such as two consecutive frames being very similar --
if we try to compress e.qg. static (white noise), video codecs just shit themselves trying to compress it (look
up e.g. videos of confetti and see how blocky they get). All in all, some compression benchmarks can be
found e.g. at
https://web.archive.org/web/20110203152015/http://www.maximumcompression.com/index.html -- the
following are mentioned types of data and their best measured compression ratios: English text 0.12, image
(lossy) 0.76, executable 0.24.

Methods

The following is an overview of some most common compression techniques.

Lossless

RLE (run length encoding) is a simple method that stores repeated sequences just as one element of the
sequence and number of repetitions, i.e. for example "abcabcabc" as "3abc".

Entropy coding is another common technique which counts the frequencies (probabilities) of symbols on
the input and then assigns the shortest codes to the most frequent symbols, leaving longer codes to the less
frequent. The most common such codings are Huffman coding and Arithmetic coding.

Dictionary (substitutional) methods try to construct a dictionary of relatively long symbols appearing in
the input and then only store short references to these symbols. The format may for example choose to first
store the dictionary and then the actual data with pointers to this dictionary, or it may just store the data in

which pointers are stored to previously appearing sequences.

Predictor compression is based on making a predictor that tries to guess following data from previous
values (which can be done e.g. in case of pictures, sound or text) and then only storing the difference against
such a predicted result. If the predictor is good, we may only store the small amount of the errors it makes.

A famous family of dictionary compression algorithms are Lempel-Ziv (LZ) algorithms -- these two guys first
proposed LZ77 in (1977, sliding window) and LZ78 (explicitly stored dictionary, 1978). These were a basis for
improved/remix algorithms, most notably LZW (1984, Welch). Additionally these algorithms are used and
combined in other algorithms, most notably gif and DEFLATE (used e.g. in gzip and png).

An approach similar to the predictor may be trying to find some general mathematical model of the data and
then just find and store the right parameters of the model. This may for example mean vectorizing a bitmap
image, i.e. finding geometrical shapes in an image composed of pixels and then only storing the parameters
of the shapes -- of course this may not be 100% accurate, but again if we want to preserve the data
accurately, we may additionally also store the small amount of errors the model makes. Similar approach is
used in vocoders used in cellphones that try to mathematically model human speech (however here the
compression is lossy), or in fractal compression of images. A nice feature we gain here is the ability to
actually "increase the resolution" (or rather generate detail) of the original data -- once we fit a model onto

Compression LRS Wiki 173/895

our data, we may use it to tell us values that are not actually present in the data (i.e. we get a fancy
interpolation/extrapolation).

Another property of data to exploit may be its sparsity -- if for example we have a huge image that's
prevalently white, we may say white is the implicit color and we only somehow store the pixels of other
colors.

Some more wild techniques may include genetic programming that tries to evolve a small program that
reproduces the input data, or using "Al" in whatever way to compress the data (in fact compression is an
essential part of many neural networks as it forces the network to "understand”, make sense of the data --
many neural networks therefore internally compress and decompress the data so as to filter out the
unimportant information; large language models are now starting to beat traditional compression algorithms
at compression ratios).

Note that many of these methods may be combined or applied repeatedly as long as we are getting
smaller results.

Furthermore also take a look at procedural generation, a related technique that allows to embed a practically
infinite amount of content with only quite small amount of code.

Lossy

In lossy compression we generally try to limit information that is not very important and/or to which we
aren't very sensitive, typically by dropping precision by guantization, i.e. basically lowering the number of
bits we use to store the "not so important" information -- in some cases we may just drop some information
altogether (decrease precision to zero). Furthermore we finally also apply lossless compression to make the
result even smaller.

For images we usually exploit the fact that human sight is less sensitive to certain visual information, such
as specific frequencies, colors, brightness etc. Common methods used here are:

¢ Convert image from RGB to YUV, leave the Y channel (brightness) as is and reduce resolution of the U
an V (color) channels. This works because human eye is less sensitive to color than brightness.

¢ Convert the image to frequency domain (e.g. with DCT or some wavelet transform) and quantize
(allocate fewer bits to) higher frequencies. This exploits the fact that human eye is less sensitive to
higher frequencies. This is the basis of e.g. jpeq.

¢ Reduce the number of possible colors -- traditional RGB uses 8 bits for each R, G and B component
and so each pixel takes 3 bytes, which allows for about 6 million colors. However using just 2 bytes
(65 thousand colors) many times suffices and saves 1/3rd of the size -- see RGB565. We may also
utilize an image-specific palette and save the image in indexed mode, i.e. compute a palette of let's
say 256 most common colors in the image, then encode the image as the palette plus pixels, of which
each will only take one byte! This saves almost 2/3rds of the size. The drop of quality can further be
made less noticeable with dithering.

¢ Reduce resolution -- plain simple. However this can be made smarter by e.g. trying to detect areas
with few details and only reducing the resolution there.

In video compression we may reuse the ideas from image compression and further employ exploiting
temporal redundancy, i.e. the fact that consecutive video frames look similar, so we may only encode some
kind of delta (change) against the previous (or even next) frame. The most common way is to fully record
only one key frame in some time span (so called I-frame, further compressed with image compression
methods), then divide it to small blocks and estimate the movement of those blocks so that they
approximately make up the following frames -- we then record only the motion vectors of the blocks. This is
why videos look "blocky". In the past interlacing was also used -- only half of each frame was recorded, every
other row was dropped; when playing, the frame was interlaced with the previous frame. Another cool idea is
keyframe superresolution: you store only some keyframes in full resolutions and store the rest of them in
smaller size; during decoding you can use the nearby full scale keyframes to upscale the low res keyframes
(search for matching subblocks in the low res image and match them to those in the big res image).

In audio we usually straight remove frequencies that humans can't hear (usually said to be above 20 kHz),
for this we again convert the audio from spatial to frequency domain (using e.g. Eourier transform).

Compression LRS Wiki 174/895

Furthermore it is very inefficient to store sample values directly -- we rather use so called differential PCM, a
lossless compression that e.g. stores each sample as a difference against the previous sample (which is
usually small and doesn't use up many bits). This can be improved by a predictor, which tries to predict the
next values from previous values and then we only save the difference against this prediction. joint stereo
coding exploits the fact that human hearing is not so sensitive to the direction of the sound and so e.g.
instead of recording both left and right stereo channels in full quality rather records the sum of both and a
ratio between them (which can get away with fewer bits). Psychoacoustics studies how humans perceive
sound, for example so called masking: certain frequencies may for example mask nearby (both in frequency
and time) frequencies (make them unhearable for humans) so we can drop them. See also vocoders.

TODO: LZW, DEFLATE etc.

Compression Programs/Utils/Standards

Here is a list of some common compression programs/utilities/standards/formats/etc:

util/format extensions free? media lossless? notes
bzip2 .bz2 yes general yes Burrows-Wheeler alg.
flac flac yes audio yes super free lossless audio format
qif .gif now yes image/anim. no limited color palette, patents expired
gzexe yes executable bin. yes makes self-extracting executable

: by GNU, DEFLATE, LZ77, mostly used by
azip .gz yes general yes Unices
ipeg .jpg, .jpeg yes? rasterimage no common lossy format, under patent fire
1z4 1z4 yes general yes high compression/decompression speed, LZ77
mp3 .mp3 now yes audio no popular audio format, patents expired
png .png yes rasterimage yes popular lossless image format, transparency
rar .rar NO general yes popular among normies, PROPRIETARY
vorbis .0gg yes audio no was a free alternative to mp3, used with ogg
zZip .zip yes? general yes along with encryption may be patented
7-zip 7z yes general yes more complex archiver

Code Example

Let's write a simple lossless compression utility in C. It will work on binary files and we will use the simplest
RLE method, i.e. our program will just shorten continuous sequences of repeating bytes to a short sequence
saying "repeat this byte N times". Note that this is very primitive (a small improvement might be actually
done by looking for sequences of longer words, not just single bytes), but it somewhat works for many files
and demonstrates the basics.

The compression will work like this:

¢ We will choose some random, hopefully not very frequent byte value, as our special "marker value".
Let's say this will be the value OxF3.
* We will read the input file and whenever we encounter a sequence of 4 or more same bytes in a row,
we will output these 3 bytes:
+ the marker value
+ byte whose values is the length of the sequence minus 4
+ the byte to repeat
¢ If the marker value is encountered in input, we output 2 bytes:
+ the marker value
+ value OxFF (which we won't be able to use for the length of the sequence)
¢ Otherwise we just output the byte we read from the input.

Decompression is then quite simple -- we simply output what we read, unless we read the marker value; in
such case we look whether the following value is OXFF (then we output the marker value), else we know we

Compression LRS Wiki 175/895

have to repeat the next character this many times plus 4.
For example given input bytes

0x11 Ox00 Ox00 OxAA OxBB OxBB OxBB OxBB 0xBB OxBB 0x10 OxF3 0x00
\ / __/
long repeating sequence marker!

Our algorithm will output a compressed sequence

0x11 0x00 Ox00 OxAA OxF3 0x02 OxBB 0x10 OxF3 OxFF 0x00
\ / \ /

compressed seq. encoded marker

Notice that, as stated above in the article, there inevitably exists a "danger" of actually enlarging some files.
This can happen if the file contains no sequences that we can compress and at the same time there appear

the marker values which actually get expanded (from 1 byte to 2).

The nice property of our algorithm is that both compression and decompression can be streaming, i.e. both
can be done in a single pass as a filter, without having to load the file into memory or randomly access bytes
in files. Also the memory complexity of this algorithm is constant (RAM usage will be the same for any size of

the file) and time complexity is linear (i.e. the algorithm is "very fast").

Here is the actual code of this utility (it reads from stdin and outputs to stdout, a flag -x is used to set

decompression mode, otherwise it is compressing):

#include <stdio.h>

#define SPECIAL VAL 0xf3 // random value, hopefully not very common

void compress(void)

{
unsigned char prevChar
unsigned int seqlLen =
unsigned char end = 0;

= 0;
0;

while ('!end)
{

int ¢ = getchar();

if (c == EOF)
end = 1;

if (c != prevChar || ¢ == SPECIAL VAL || end || seqLen > 200)
{ // dump the sequence
if (seqgLen > 3)
printf("%c%c%c",SPECIAL VAL,seqlLen - 4,prevChar);

else
for (int 1 = 0; i < seqlLen; ++1i)
putchar(prevChar);
seqLen = 0;
}
prevChar = c;
segLen++;

if (c == SPECIAL_VAL)
{

putchar(SPECIAL VAL);
putchar(0xff);
seqLen = 0;
}
}
}

// this is how we encode the special value appearing in the input

void decompress(void)

Compression LRS Wiki

176/895

{

unsigned char end = 0;

while (1)
{
int ¢ = getchar();
if (c == EOF)
break;

if (c == SPECIAL_VAL)
{

unsigned int seqlLen = getchar();

if (seqLen == Oxff)
putchar(SPECIAL VAL);
else

{

c = getchar();

for (int 1 = 0; i < seqglLen + 4; ++i)
putchar(c);
}

}
else
putchar(c);
b

}

int main(int argc, char **argv)
{
if (argc > 1 && argv[1l][0] == '-' && argv[1l][1l] == 'x' && argv[1l][2] == 0)
decompress();
else
compress();

return 0;

}

How well does this perform? If we try to let the utility compress its own source code, we get to 1242 bytes
from the original 1344, which is not so great -- the compression ratio is only about 92% here. We can see
why: the only repeating bytes in the source code are the space characters used for indentation -- this is the
only thing our primitive algorithm manages to compress. However if we let the program compress its own
binary version, we get much better results (at least on the computer this was tested on): the original binary
has 16768 bytes while the compressed one has 5084 bytes, which is an EXCELLENT compression ratio of
30%! Yay :-)

See Also

e procedural generation
e minification

compsci

Computer Science

Computer science, abbreviated as "compsci", is (surprise-surprise) a science studying computers. The term is
pretty wide, a lot of it covers very formal and theoretical areas that neighbor and overlap with mathematics,
such as formal languages, cryptography and machine learning, but also more practical/applied and "softer"
disciplines such as software_engineering, programming hardware, computer networks or even user interface
design. This science deals with such things as algorithms, data structures, artificial intelligence and
information theory. The field has become quite popular and rapidly growing after the coming of the 21st
century computer/internet revolution and it has also become quite spoiled and abused by its sudden
lucrativity.

Computer Science LRS Wiki 177/895

Overview
Notable fields of computer science include:

¢ artificial intelligence

e computer graphics
e databases

e hardware design
e networking
e security and cryptography

e software engineerin
¢ theoretical computer science

e user interface
e smaller field or subfields such as operating systems, compiler design, formal verification, speech
recognition etc.

Computer science also figures in interdisciplinary endeavors such as bioinformatics and robotics.

In the industry there have arisen fields of art and study that probably shouldn't be included in computer
science itself, but are very close to it. These may include e.g. web design (well, let's include it for the sake of
completeness), game design, system administration etc.

computational_complexity

Computational Complexity

Computational complexity is a formal (mathematical) study of resource usage (usually time and memory) by
computers as they're solving various types of problems. For example when using computers to sort arrays of
numbers, computational complexity can tell us which algorithm will be fastest as the size of the array grows,
which one will require least amount of memory (RAM) and even what's generally the fastest way in which this
can be done. While time ("speed", number of steps) and memory (also space) are generally the resources we
are most interested in, other can be considered too, e.g. network or power usage. Complexity theory is
extremely important and one of the most essential topics in computer science; it is also immensely
practically important as it helps us optimize our programs, it teaches us useful things such as that we can
trade time and space complexity (i.e. make program run faster on detriment of memory and vice versa) etc.

Firstly we have to distinguish between two basic kinds of complexity:

¢ algorithm complexity: Complexity of a specific algorithm. For example guick sort and bubble sort
are both algorithms for sorting arrays but quick sort has better time complexity. (Sometimes we may
extend this meaning and talk e.g. about memory complexity of a data structure etc.)

¢ problem complexity: Complexity of the best algorithm that can solve particular problem; e.g. time
complexity of sorting an array is given by time complexity of the algorithm that can sort arrays the
fastest.

Algorithm Complexity

Let us now focus on algorithm complexity, as problem complexity follows from it. OK, so what really is the
"algorithm complexity"? Given resource R -- let's consider e.g. time, or the number of steps the algorithm
needs to finish solving a problem -- let's say that complexity of a specific algorithm is a function f(N) where N
is the size of input data (for example length of the array to be sorted), which returns the amount of the
resource (here number of steps of the algorithm). However we face issues here, most importantly that the
number of steps may not only depend on the size of input data but also the data itself (e.g. with sorting it
may take shorter time to sort and already sorted array) and on the computer we use (for example some
computers may be unable to perform multiplication natively and will emulate it with SEVERAL additions,
increasing the number of steps), and also the exact complexity function will be pretty messy (it likely won't
be a nice smooth function but rather something that jumps around a bit). So this kind of sucks. We have to
make several steps to get a nice, usable theory.

Computational Complexity LRS Wiki 178/895

The solution to above issues will be achieved in several steps.

FIRSTLY let's make it more clear what f(N) returns exactly -- when computing algorithm complexity we will
always be interested in one of the following:

¢ best case scenario: Here we assume f(N) always returns the best possible value for given N, usually
the lowest (i.e. least number of steps, least amount of memory etc.). So e.g. with array sorting for
each array length we will assume the input array has such values that the given algorithm will
achieve its best result (fastest sorting, best memory usage, ...). l.e. this is the lower bound for all
possible values the function could give for given N.

e average case scenario: Here f(N) returns the average, i.e. taking all possible inputs for given input
size N, we just average the performance of our algorithm and this is what the function tells us.

e worst case scenario: Here f(N) return the worst possible values for given N, i.e. the opposite of best
case scenario. This is the upper bound for all possible value the function could give for given N.

This just deals with the fact that some algorithms may perform vastly different for different data -- imagine
e.g. linear searching of a specific value in a list; if the searched value is always at the beginning, the
algorithm always performs just one step, no matter how long the list is, on the other hand if the searched
value is at the end, the number of steps will increase with the list size. So when analyzing an algorithm we
always specify which kind of case we are analyzing (WATCH OUT: do not confuse these cases with
differences between big O, big Omega and big Theta defined below). So let's say from now on we'll be
implicitly examining worst case scenarios.

SECONDLY rather than being interested in PRECISE complexity functions we will rather focus on so called
asymptotic complexity -- this kind of complexity is only concerned with how fast the resource usage
generally GROWS as the size of input data approaches big values (infinity). So again, taking the example of
array sorting, we don't really need to know exactly how many steps we will need to sort any given array, but
rather how the time needed to sort bigger and bigger arrays will grow. This is also aligned with practice in
another way: we don't really care how fast our program will be for small amount of data, it doesn't matter if
it takes 1 or 2 microseconds to sort a small array, but we want to know how our program will scale -- if we
have 10 TB of data, will it take 10 minutes or half a year to sort? If this data doubles in size, will the sorting
time also double or will it increase 1000 times? This kind of complexity also no longer depends on what
machine we use, the rate of growth will be the same on fast and slow machine alike, so we can conveniently
just consider some standardized computer such as Turing machine to mathematically study complexity of
algorithms.

Rather than exact value of resource usage (such as exact number of steps or exact number of bytes in RAM)
asymptotic complexity tells us a class into which our complexity falls. These classes are given by
mathematical functions that grow as fast as our complexity function. So basically we get kind of "tiers", like
constant, linear, logarithmic, quadratic etc., and our complexity simply falls under one of them. Some
common complexity classes, from "best" to "worst", are following (note this isn't an exhaustive list):

e constant: Given by function f(x) = 1 (i.e. complexity doesn't depend on input data size). Best.

¢ logarithmic: Given by function f(x) = log(x). Note the base of logarithm doesn't matter.

¢ linear: Given by function f(x) = x.

¢ linearithmic: Given by function f(x) = x * log(x).

e quadratic: Given by function f(x) = x~2.

e cubic: Given by function f(x) = x™3.

e exponential: Given by function f(x) = n”x. This is considered very bad, practically unusable for
larger amounts of data.

Now we just put all the above together, introduce some formalization and notation that computer scientists
use to express algorithm complexity, you will see it anywhere where this is discussed. There are the
following:

¢ big O (Omicron) notation, written as O(f(N)): Says the algorithm complexity (for whatever we are
measuring, i.e. time, space etc. and also the specific kind of case, i.e. worst/best/average) is
asymptotically bounded from ABOVE by function f(N), i.e. says the upper bound of complexity. This
is probably the most common information regarding complexity you will encounter (we usually want
this "pessimistic" view). More mathematically: complexity f(x) belongs to class O(g(y)) if from some

Computational Complexity LRS Wiki 179/895

NO (we ignore some initial oscillations before this value) the function f always stays under function g
multiplied by some positive constant C. Formally: f(x) belongs to O(g(y)) => exists C > 0 and NO > 0O:
foralln >= NO: 0 <= f(n) <= C * g(n).

¢ big Omega notation, written as Omega(f(N)): Says the algorithm complexity lower bound is given
by function f(N). Formally: f(x) belongs to Omega(g(y)) => exists C > 0 and NO > 0: for all n >= NO: 0
<=C*g(n) <= f(n).

¢ big Theta notation, written as Theta(f(N)): This just means the complexity is both O(f(N)) and
Omega(f(N)), i.e. the complexity is tightly bounded by given function.

Please note that big O/Omega/Theta are a different thing than analyzing best/worst/average case! We can
compute big O, big Omega and big Theta for all best, worst and average case, getting 9 different
"complexities".

Now notice (also check by the formal definitions) that we simply don't care about additive and multiplicative
constants and we also don't care about some initial oscillations of the complexity function -- it doesn't matter
if the complexity function is f(x) = x or f(x) = 100000000 + 100000000 * x, it still falls under linear
complexity! If we have algorithm A and B and A has better complexity, A doesn't necessarily ALWAYS
perform better, it's just that as we scale our data size to very high values, A will prevail in the end.

Another thing we have to clear up: what does input size really mean? l.e. what exactly is the N in f(N)?
We've said that e.g. with array sorting we saw N as the length of the array to be sorted, but there are several
things to additionally talk about. Firstly it usually doesn't matter if we measure the size of input in bits, bytes
or number of items -- note that as we're now dealing with asymptotic complexity, i.e. only growth rate
towards infinity, we'll get the same complexity class no matter the units (e.g. a linear growth will always be
linear, no matter if our x axis measures meters or centimeters or light years). SECONDLY however it
sometimes DOES matter how we define the input size, take e.g. an algorithm that takes a square image with
resolution R * R on the input, iterates over all pixels and find the brightest one; now we can define the input
size either as the total number of pixels of the image (i.e. N = R * R) OR the length of the image side (i.e. N =
R) -- with the former definition we conclude the algorithm to have linear time complexity (for N input pixels
the algorithm makes roughly N steps), with the latter definition we get QUADRATIC time complexity (for
image with side length N the algorithm makes roughly N * N steps). What now, how to solve this? Well, this
isn't such an issue -- we can define the input size however we want, we just have to stay consistent so that
we are able to compare different algorithms (i.e. it holds that if algorithm A has better complexity than
algorithm B, it will stay so under whatever definition of input size we set), AND when mentioning complexity
of some algorithm we should mention how we define the input size so as to prevent confusion.

With memory complexity we encounter a similar issue -- we may define memory consumption either as an
EXTRA memory or TOTAL memory that includes the memory storing the input data. For example with array
sorting if an algorithm works in situ (in place, needing no extra memory), considering the former we conclude
memory complexity to be constant (extra memory needed doesn't depend on size of input array),
considering the latter we conclude the memory complexity to be linear (total memory needed grows linearly
with the size of input array). The same thing as above holds: whatever definition we choose, we should just
mention which one we chose and stay consistent in using it.

Problem Complexity
See also P_vs NP.

As said, problem complexity is tied to algorithm complexity; a complexity of specific problem (e.g. sorting an
array, factorization of a number, searching a sorted list etc.) is determined by the best possible algorithm
that solves the problem (best in terms of analyzed complexity). Traditionally we use Turing machines and
formal languages to analyze problem complexity. Here we'll stay a bit informal and only mention some ideas.

Similarly to algorithm complexity, with problems we again define classes that are only about "how quickly
the resource usage grows as we increase input size". The main difference is we are examining problems, so
the classes we get are classes of PROBLEMS (usually classes of formal languages, like e.g. in Chomsky's
language hierarchy), not classes of functions (seen in algorithm complexity). Some common classes are:

e DTime(f(x)): Problems for whose solution a DETERMINISTIC Turing machine has an algorithm with
time complexity O(f(x)).

Computational Complexity LRS Wiki 180/895

* NTime(f(x)): Problems for whose solution a NON-DETERMINISTIC Turing machine has an algorithm
with time complexity O(f(x)).

¢ DSpace(f(x)): Same as DTime but for space complexity.

¢ NSpace(f(x)): Same as NTime but for space complexity.

e P: Union of all classes DTime(n"k), i.e. all problems that can be solved by a DETERMINISTIC Turing
machine with polynomial time complexity.

¢ NP: Union of all classes NTime(n”"k), i.e. the same as above but for NON-DETERMINISTIC Turing
machine. It is currently not know if classes P and NP are the same, though it's believed to not be the
case -- in fact this is probably the most famous yet unsolved problem of computer science.

e EXP: Union of all classes DTime(2™n"k).

Examples

Practically analyzing time complexity of algorithms mostly involves looking at the loops in our algorithm as
these are what makes number of steps in algorithm variable. Linear sequences of instructions (such as
initializations) don't interest us, no matter how long, as these have no effect on asymptotic complexity. But
remember that looping may also be achieved with recursion etc., so just look carefully.

Let's consider the simple bubble sort array sorting algorithm, with the simple optimization that ends as soon
as the array is sorted; here it is written in C:

void bubbleSort(int *array)

{
for (int 1 =0; i <N - 1; ++1i)
{
int end = 1;
for (int j =0; j <N -1 - 1i; ++4j)
if (alj] > alj + 11)
{
swap(&aljl,&alj + 11);
end = 0;
}
if (end) // no swap happened => sorted, end
break;
}
}

The size of input data is the length of input array (N), for memory we consider only the extra memory used.
Let's see about different complexities now:

e asymptotic TIME complexity for WORST case: Worst case happens when the optimizing condition
(if (end)) never triggers and so both loops (outer and inner one) in our algorithm run all their
iterations; the outer loop is performed approximately N times (actually N - 1 times but remember that
asymptotic complexity ignores -1 here as an additive constant) and for each of its iterations the inner
loop runs approximately N - j times. So e.g. for N = 5 we get approximately 5 + 4 + 3 + 2 + 1 steps,
so for given N we basically have to sum up numbers from 1 to N -- there is a formula for computing
such sum and thatis*(N (N + 1)) /2 =N"2/2 + N /2. With asymptotic complexity we just take the
biggest term and ignore any multiplication constant (division by two), so we just see N~2 here and
conclude that the time complexity of worst case for bubble sort is quadratic, i.e. O(N™2). Notice that
technically we can also say the complexity belongs to any "worse" class, e.g. O(N"~3) (as O(N™2) is its
subclass), which is technically true but doesn't tell us as much. So here it's better to further more
precisely say the complexity of worst case also belongs to Omega(N~2) (the lower bound) and
therefore (by belonging to both O(N~2) and Omega(N~2)) also belongs to Theta(N"2), i.e. it "won't
be slower BUT NOR faster than N™~2".

e asymptotic TIME complexity for BEST case: Best case happens when the input array is already
sorted -- here the algorithm enters the outer loop, then runs the inner loop -- approximately N
iterations -- and then (since no swap happened) ends at the final condition. So the time complexity is
linear -- we can say that the upper asymptotic bound on best case scenario is O(N). Again we see the
complexity is linearly bound from the bottom too so it's better to say the complexity of best case

Computational Complexity LRS Wiki 181/895

belongs to Theta(N).

e space (memory) complexity: Bubble sort works in place and though it uses extra variables, the size
of those variables doesn't depend on the size of input array, so (as we only count extra memory
requirements) we can say memory complexity is constant, i.e. O(1), and also Theta(1).

TODO: also something simpler? problem complexity?

computer

Computer

The word computer may be defined in countless ways and can also adopt many different meanings; a
somewhat common definition may be this: computer is a machine that automatically performs mathematical
computations. We can also see it as a machine for processing information, manipulating symbols or, very
generally, as any tool that helps computation, in which case not just laptops, desktops and cellphones fit the
definition, but also primitive computers like a sundial, one's fingers or even a mathematical formula. But
nowadays the word of course implicitly implies an electronic digital computer.

The electronic digital computer turned out to be one of the greatest technological inventions in history for
numerous reasons -- firstly computers allowed creation of many other things which previously required too
complex calculations, such as highly complex planes, space rockets and undreamed of factories (and, of
course, yet more powerful computers which is why we've seen the exponential growth in computer power),
they also allow us to crunch extreme volumes of data and accelerate science; secondly they offered
extremely advanced work tools like robots, virtual 3D visualizations, artificial intelligence and physics
simulators, and they also gave us high quality, cheap multimedia and entertainment like games -- with
computers anyone can shoot video, record music, carry around hundreds of movies in his pocket or fly a
virtual plane. Most important however is probably the fact that computers enabled the Internet -- by this they
forever changed the world.

We can divide computers based on many attributes, e.g.:

¢ by continuous or discrete representation of data: digital vs analog
¢ by way of existing:

+ physical: existing as a physical object

0 by hardware technology: electronic ("lightning in sand"), mechanical, guantum,
biological etc.
¢ virtual/abstract: existing as an abstract idea of a computer, e.g. Turing machine, MIX or
various fantasy consoles; see also ISA
¢ by purpose: special purpose vs general purpose, personal, server, calculator, embedded,
workstation, supercomputers, gaming computer etc.

¢ by programmability: hon-programmable, partially or fully programmable
¢ by the theoretical model of computation it is based on: Turing machine, lambda calculus etc.
¢ by computational power: how difficult problems the computer is able to solve, i.e. where in the

Chomsky hierarchy it stands (typically we want Turing complete computers)
¢ by other criteria: price, reliability, durability etc.

| [_
| |>.. [|+ \ [
|| [|+ 1] | :==-"

I | | 7/ I

. o [_/". o [R
/ N\ N / VAN CEREEEY
il | / \ AR [0000 |
[5:5] [+[lollol,,, === | [|."[;:5] | I
R T T D [B T I [T 111
ot i ||r|r|r|l|
\#HHHEHE

Jrriiiiiao i/ /-"'-)

/ SRR // (/

Computer LRS Wiki 182/895

On the left typical personal computer, with case, monitor, keyboard, mouse and speakers; on the right a
pocket mechanical calculator of the Curta type.

Computers are theoretically studied by computer science. The kind of computer we normally talk about
consists of two main parts:

e hardware: physical parts
e software: programs executed by the hardware, made by programmers

The power of computers is mathematically limited, Alan Turing mathematically proved that there exist
problems that can never be completely solved by any algorithm, i.e. there are problems a computer
(including our brain) will never be able to solve (even if solution exists). This is related to the fact that the
power of mathematics itself is limited in a similar way (see Godel's theorems). Turing also invented the
theoretical model of a computer called the Turing machine. Besides the mentioned theoretical limitation,
many solvable problems may take too long to compute, at least with computers we currently know (see

computational complexity and P_vs NP).

And let's also mention some curious statistics and facts about computers as of the year 2024. The fist
computer in modern sense of the word is frequently considered to have been the Analytical Engine designed
in 1837 by an Englishman Charles Babbage, a general purpose mechanical computer which he however
never constructed. After this the computers such as the Z1 (1938) and Z3 (1941) of a German inventor
Konrad Zuse are considered to be the truly first "modern" computers. Shortly after the year 2000 the number
of US households that had a computer surpassed 50%. The fastest supercomputer of today is Frontier
(Tennessee, USA) which achieved computation speed of 1.102 exaFLOPS (that is over 10718 floating point
operations per second) with power 22.7 MW, using Linux as its kernel (like all top 500 supercomputers). Over
time transistors have been getting much smaller -- there is the famous Moore's law which states that
number of transistors in a chip doubles about every two years. Currently we are able to manufacture
transistors as small as a few nanometers and chips have billions of them. { There's some blurriness about
exact size, apparently the new "X nanometers" labels are just marketing lies. ~drummyfish }

Typical Computer

Computers we ordinarily talk about in everyday conversations are electronic digital mostly personal
computers such as desktops and laptops, possibly also cell phones, tablets etc.

Such a computer consists of some kind of case (chassis), internal hardware plus peripheral devices that
serve for input and output -- these are for example a keyboard and mouse (input devices), a monitor (output
device) or harddisk (input/output device). The internals of the computer normally include:

e motherboard: The main electronic circuit of the computer into which other components are plugged
and which creates the network and interfaces that interconnect them (a chipset). It contains slots for
expansion cards as well as connectors for external devices, e.g. USB. In a small memory on the board
there is the most basic software (firmware), such as BIOS, to e.g. enable installation of other software.
The board also carries the clock generator for synchronization of all hardware, heat sensors etc.

¢ CPU (central processing unit): Core of the computer, the chip plugged into motherboard that
performs general calculations and which runs programs, i.e. software.

e RAM/working memory/main memory: Lower capacity volatile (temporary, erased when powered
off) working memory of the computer, plugged into motherboard. It is used as a "pen and paper" by
the CPU when performing calculations.

o disk: Non-volatile (persisting when powered off) large capacity memory for storing files and other
data, connected to the motherboard via some kind of bus. Different types of disks exist, most
commonly hard disks and SSDs.

e expansion cards (GPU, sound card, network card, ...): Additional hardware cards plugged into
motherboard for either enabling or accelerating specific functionality (e.g. GPU for graphics etc.).

e PSU (power supply unit): Converts the input electrical power from the plug to the electrical power
needed by the computer.

¢ other things like fans for cooling, batteries in laptops etc.

Computer LRS Wiki 183/895

Notable Computers

Here is a list of notable computers.

{ Some nice list of ancient computers is here: https://xnumber.com/xnumber/frame_malbum.htm.

~drummyfish }

name

brain

abacus

Antikythera
mechanism

slide rule

Shickard's
calculating clock

Arithmometer

Difference Engine

Analytical Engine

design

nomodgram

Commodore 64
ZX Spectrum
NES/Famicom
Macintosh
Amiga

NeXT

SNES

PlayStation

Computer

year
-500M
-2500
-125
1620
1623

1820

1822

1837

1884

1941

1945
1970
1977

1979

1980

1981

1982

1982

1983

1984

1985

1988

1990
1994

specs (max, approx)

86+ billion neurons

~30 gears, largest with 223 teeth

17 wheels

6 digit numbers

8 digit numbers, 24 axles, 96 wheels

~16K RAM, 40 digit numbers

176B RAM, CPU 10Hz 22bit 2600

relays

~85B RAM, ~5KHz CPU, 18000

vaccum tubes

4M RAM, CPU 1.25Mhz 16bit

64K RAM, 1MHz CPU 8bit

8K RAM, CPU 1.7MHz 8bit

32K RAM, 1MHz CPU 8bit, 20K ROM
256K RAM, CPU 4.7MHz 16bit, BASIC,

DOS

64K RAM, 20K ROM, CPU 1MHz 8bit

128K RAM, CPU 3.5MHz 8bit,

256x192 screen

2K RAM, 2K VRAM, CPU 1.7MHz 8bit,

PPU

128K RAM, CPU 7MHz 32bit, floppy,

512x342

256K RAM, 256K ROM, CPU 7MHz

16bit, Amiga0OS

8M RAM, 256M drive, CPU 25MHz
32bit, NeXTSTEP OS

128K RAM, 64K VRAM, CPU 21MHz

16bit

2M RAM, 1M VRAM, CPU 33MHz

32bit, CD-ROM

LRS Wiki

comment

biological computer, developed by
nature

one of the simplest digital counting tools

1st known analog comp., by Greeks
(mechanical)

simple tool for multiplication and division

1st known calculator, could multiply, add
and sub.

1st commercial calculator (add, sub.,
mult.)

mech. digital comp. of polynomials, by
Babbage

1st general purpose comp, not realized,
by Babbage

graphical/geometrical tools aiding
computation

1st fully programmable electronic digital
computer

1st general purpose computer

legendary mini

popular TV-attached home computer by
Apple

popular TV-attached home computer by
Atari

successful TV-connected home computer
by Commodore

1st personal computer as we know it
now, modular

very popular TV-connected home
computer

successful UK TV-connected home comp.
by Sinclair
TV-connected Nintendo game console

very popular personal computer by
Apple

personal computer by Commodore,
ahead of its time

famous workstation, used e.g. for Doom
dev.

game console, NES successor

popular TV-connected game console by
Sony

184/895

name

T1-80

Deep Blue

Nintendo 64

GameBoy Color

GameBoy Advance

Xbox

Nintendo DS

Nintendo Wii

iPhone (aka
spyphone)

ThinkPad X200
ThinkPad T400

Raspberry Pi 3
Arduboy

Pokitto

Raspberry Pi 4
Frontier
Deep Thought

HAL 9000

PD computer
Turing machine

year

1995

1995

1996

1998

2001
2001
2004

2006

2007

2008

2008
2016
2016

2017
2019
2021

specs (max, approx)

7K RAM, CPU 980KHz, 48x64 1bit
screen

30 128MHz CPUs, ~11 GFLOPS

8M RAM, CPU 93MHz 64bit, 64M ROM

cartr.

32K RAM, 16K VRAM, CPU 2MHz 8bit,

160x144

~256K RAM, 96K VRAM, CPU 16MHz
32bit ARM, 240x160

64M RAM, CPU 733MHz Pentium I

4M RAM, 256K ROM, CPU ARM
67MHz, touchscreen

24M RAM, 512M ROM, SD, CPU PPC
729M

128M RAM, CPU ARM 620MHz, GPU,
cam., Wifi, 480x320

8G RAM, CPU 2.6GHz, Wifi

8G RAM, CPU 2.8GHz, Wifi

1G RAM, CPU 1.4GHz ARM, Wifi
2.5K RAM, CPU 16MHz AVR 8bit, 1b
display

36K RAM, 256K ROM, CPU 72MHz
ARM

8G RAM, CPU 1.5GHz ARM, Wifi

9000+ 64 2GHz CPUs, 37000+ GPUs

infinite RAM

TODO: mnt reform 2, pinephone, 3DO, ti-89, quantum?

See Also

e MIX

comment
famous programmable graphing
calculator

1st computer to defeat world chess
champion

famous TV-connected game console
handheld gaming console by Ninetendo

successor to GBC

TV-connected game console by Micro$oft

famous handheld game console by
Nintendo

famous family TV console with "stick"
controllers

1st of the harmful Apple "smartphones"

legendary laptop, great constr., freedom
friendly

legendary laptop, great constr., freedom
friendly

very popular tiny inexpensive SBC

tiny Arduino open console

indie educational open console

tiny inexpensive SBC, usable as desktop

fastest supercomputer to date, 1st with
1+ exaFLOPS

fictional computer from Hitchhiker's
Guide ...

fictional Al computer (2001: A Space
Oddysey)

planned LRS computer

important theoretical computer by Alan
Turing

comun

Comun

Comun is a beautiful, greatly minimalist programming language made by drummyfish in 2022, based on his
ideals of good, selfless technology known as [ess retarded software (LRS), of which it is now considered the

official programming language, though still a greatly work in progress one. In the future it should gradually
replace C as the preferred LRS language, however let's keep in mind the language is still highly experimental
and work in progress, it may yet change more or less. The language has been inspired mainly by Forth but
also C, brainfuck and other ones. Though already usable, it is still in quite early stages of development;

Comun

LRS Wiki

185/895

currently there is a suckless implementation of comun in C and a number of supplemental materials such as
a specification, tutorial and some example programs. The project repository is currently at
https://codeberg.org/drummyfish/comun. The aim now is to make a self hosted implementation, i.e. write
comun in comun. Though very young, comun is probably already the best programming language
ever conceived :-)

{ NOTE: | found a language on esolang wiki called Minim that looks a bit similar to comun, however it looks a
bit sucky. Anyway it should be researched more. ~drummyfish }

The language is intended to be the foundation of a completely new, non-capitalist computer technology built
from the ground up, which should culminate in the creation of the LRS much desired public domain
computer. This technology is derived from the model of an ideal society and as such will aim for completely
different goals (such as helping all living beings as much as possible without enslaving them) and values; this
makes comun astronomically different in philosophy and design of the shitty, toxic capitalist joke languages
such as C++ and Rust which pursue fascism, enslavement of humans to the productivity cult etc.

Comun is planned to closely interact with comun shell, though the two parts will be completely independent.

A quick sum up is following: comun is minimalist, low level with minimum abstraction, portable,
imperative and stack-based, using reverse Polish notation. It can be both compiled and
interpreted. There are only primitive integer data types (native integer size by default with possibility
to specify exact width where necessary, sighed/unsigned interpretation is left to the programmer) and
optional pointers that can be used as variables, for managing multiple stacks, creating arrays etc. Its
specification can fit on a sheet of paper and is completely public domain under CCO (as is its current
implementation). It has no standard library. There are no English keywords; commands are rather very
short (mostly 1 to three symbols) math-like symbols. Source code only allows ASCII symbols (no unicode).
There is an optional preprocessor that uses comun itself (i.e. it doesn't use any extra language).
Functions and recursion are supported. Many features of the language are optional and never burden the
programmer if he doesn't use them. Simplified versions of the language (minicomun and microcomun) are
also specified.

Examples

Here is a very short showcase of comun code, demonstrating some common functions:

max: <' ? >< . ., # takes maximum of two values
max3: max max . # takes maximum of three values

recursive factorial
factR:
? 1
$0 -- factR *

~1

iterative factorial
factl:
$0 --
@I
>< $1 * ><

The following is a guine in comun:

0 46 32 34 S 34 32 5883S -->S: "0 46 32 34 S 34325883S -->",
The following code translates brainfuck to comun (proving comun really is Turing complete):

Comun LRS Wiki 186/895

0 ||$>0 "

@@
<? 7

<-

$0 II+II = $1 II_II = ?
$0 -> $0 -> " " ->

$0 "<" = $1 ">" = | ?
II$II -> $0 -> IIOII -> n n ->

$0 II.II = ?
0 sty

$0 II’II = ?
0 "$<0 <- " -->

$0 91 = ? # left bracket
0 II@I n __>

$0 93 = ? # right bracker
0 II- n __>

TODO: more, code examples, compare the above with C, ...

See Also

e comun shell
o MIX

e uxn

e mMinim

consumerism

Consumerism

TODO: actual normal article possibly

Rant

{ Here I'll leave the rant I've written when | was kinda stressed. ~drummyfish }

CONSUME YOU FUCKING IDIOTIC BITCH YOU DON'T EVEN HAVE THE LATEST Al RAYTRACING ENCRYPTION
GPUUUUUUUU 1080K WIRELESS GAYMING MONITOR WITH BLOCKCHAIN BUY IT BUYYYYYY IT YOU IDIOT.
--capitalism { Unironically this is literally how ads of Alza.cz (the most successful tech store in Czech
Republic) are. There's this unbelievably annoying green motherfucker that just yells over and over from the
TVs and radios things like "BUY THIS BUY THIS BUUUUUUUUUUUUUUUY ITTTTITTTTTT ITSSSS ON
DISCOUUUUUUUNT DICSOUUUUUUUUNTTTTTT", it makes me suicidal, everyone | ever met hates it to death.
Also everyone | ever met buys stuff from them. ~drummyfish }

Consumerism LRS Wiki 187/895

Consumerism (also consoomerism) is a built-in "feature" of capitalism that says EVERYTHING HAS TO BE
CONSUMED on a regular short-term basis so as to keep CONSTANT P.R.O.G.R.E.S.S.”TM(c)/PERSONAL
DEVELOPMENT GROWTHP/PRODUCTIVITY " tm~tm~tm~tm, even things that in theory could last decades to
generations such as houses, cars, computers, software, even just INFORMATION etc. Yes, we could make nice
durable machines that wouldn't break and would serve a man for generations, we could write a finished
operating system that would work and be useful, but that wouldn't be good for the seller if he only sold the
thing once in a hundred years, would it? ALERT ALERT: BAD FOR CAPITAL. He wants to sell the thing and then
PROFIT from it every day as he lies on the beach being fucked by 10 billion whore lolitas, so the thing has to
break regularly and just demand to be replaced once in a year or so (see planned obsolescence) -- haha,
actually you know what would be best? WHAT IF :D WHAT IF WE RAPE THE CUSTOMER EVERY DAI,
LMAOOOOOO What IF THERE ARE NO PRODUCTS BUT PRODUCT ARE ACTUALLY JUST SERVICES :DDDDD
LMAO THEN NO ONE CAN OWN ANYTHING, YOUR CAR AND YOUR TOOTHBRUSH IS JUST A SUBSCRIPTION
LOOOOL, it just stops running if you stop paying. Why do this? Because in capitalism economy MUSTN'T STOP
ULTRA EXPONENTIALLY EXPLODING EVERY TRILLISECOND and EVERYONE MUST HAVE 10000 BILLION JOBS
ELSE THE POOR WORKER LOSES THE MEANING OF LIFE like the neanderthals who lacked the good capitalist
overlords that assure the basic human need of ultraexponential personal growth and all killed themselves,
also the same with stupid lazy animals. So capitalism has to constantly
GROOO0O0O00000000000000O0O0OOO0OOOWWWWWW FOR ANY COST JUST GROW GROW GROW GROW
GROW GROOOOO0O00000000000OWWWWWWWWWWWW -- is it good? No, but it's called PWOGWEESSS so
people LOVE IT, people will shit themselves and suffocate their mouths with their shit just to hear the word
PWOGWEEEEES (or alternatively UPDATE or ANTIPEDOPHILE PROTECTION), if a politician says PWEGWESS
enough times in his speech the crowd will just start sucking his dick on the stage and he will win the
elections by 130% majority. LMAOOOOO WHAT IF we make updates a kind of consumerist product, LOL
WHAT IF one group of people build houses one day and the other group destroys them the other day and so
on so on, it's INFINIITEEEEEEEEEEEEEEEEEEEE JOBS LOL :D | should fucking get into politics.

TODO

copyfree

Copyfree

Copyfree Initiative is yet another nonprofit group trying to create and maintain its own definition and
standardization of "free as in freedom". Its website is https://copyfree.org/, the symbol they use is F in a
circle. Similarly to e.g. ESF copyfree maintains a list of approved and rejected licenses; the main
characteristics of the group are great opposition of copyleft in favor of permissive licenses, which is good,
however the group justifies its operation by "helping business", i.e. it's most likely just another unethical
capitalist organization that will ultimately stand against people and once/if becomes successful will sell its
soul to the highest bidder. Copyfree was founded by Chad Perrin and has existed at least since 2007
(according to internet archive).

See Also

* FSF
* OSI

e suckless

* GNG

e Creative Commons
e Bitreich

*LRS

-n
mal

copyleft

Copyleft

Copyleft (also share-alike) is a concept of allowing sharing and modifications of intellectual works (such as
pictures, music or computer programs) on the legal condition that others will share it under the same terms
(i.e. that they will also allow the work's further free sharing and modification etc.); it was created by the

Copyleft LRS Wiki 188/895

critics of copyright as a "more sane" take on this concept. The symbol of copyleft is a mirrored copyright
symbol, i.e. horizontally flipped C in circle (C looking "to the left", Unicode U+1F12F). Copyleft is widely
utilized by some proponents of free (as in freedom) software and culture to legally (i.e. with a license) ensure
this software/art and its modifications will always remain free (as in freedom), however other camps of
freedom proponents argue that copyleft is still too restrictive and share their works under even more relaxed
legal conditions. Copyleft kind of hacks copyright to de-facto remove copyright (the monopoly it creates) by
its own power. Typical examples of copyleft licenses are the GPL (mostly used for software) and CC BY-SA
(mostly used for non-software works).

Copyleft has been by its mechanisms likened to a virus because once it is applied to a certain work, it
"infects" it and will force its conditions on any descendants of that work, i.e. it will spread itself -- the word
virus here bears less of a negative connotation, at least to some who see it as a "good virus".

For free/open-source software the alternative to copyleft is so called permissive licensing which (same as
with copyleft) grants all the necessary freedom rights, but, unlike copyleft, does NOT require further modified
versions to grant these rights as well. This allows free software being forked and developed into proprietary
software and is what copyleft proponents criticize. However, both copyleft and permissive licensing are free
as in freedom.

In the FOSS world there is a huge battle between the copyleft camp and permissive camp (our LRS
advocates permissive licenses with a preference for 100% public domain). These debates go beyond mere
technology and law for the basic disagreement lies in whether freedom should be forced and if forced
freedom really is freedom, thereby getting into questions of politics, ideologies, philosophy, morality and
ethics. Some groups opposing copyleft include copyfree, GNG and LRS.

Issues With Copyleft

In the great debate of copyleft vs permissive free licenses we, as technological anarchists who oppose any
"intellectual property" laws and their enforcement, stand on the permissive side. Here are some reasons for
why we reject copyleft:

¢ [t burdens the reuser of the work by requiring him to do something extra -- while a public
domain and many permissive licensed works can simply be taken and used without taking any extra
action, just as it should ideally be, a work under copyleft requires its user to take an action, for
example copying the license file (and then forever making sure it doesn't get lost), giving credit etc.
While one may think this is not such a big deal, it's a form of friction that can get in the way of
creativity, especially when combining many works under possibly different copyleft licenses which
suddenly becomes quite cumbersome to handle.
By adopting copyleft one is embracing and supporting the copyright laws and perpetuating
the capitalist ways ("marrying the lawyers") because copyleft relies on and uses copyright laws to
function; to enforce copyleft (prevent "disallowed" use) one has to make a legal action (while with
permissive license we simply basically give up the rights to make a legal action). Copyleft chooses to
play along with the capitalist bullshit intellectual property game and threatens to fight and use force
and bullying in order to enforce correct usage of information.
In a way it is bloat. Copyleft introduces legal complexity, friction and takes programmers' head
space (every programmer has to study a bit of copyright law nowadays due to such BS), especially
considering that copyleft is also probably largely ineffective as detecting its violation and actual
legal enforcement is difficult, expensive and without a guaranteed positive outcome (ESE
encourages programmers to hand over their copyright to them so they can defend their programs
which just confirms existence and relevance of this issue). The effort spent on dealing with this is a
wasted human time. Sure, corporations can probably "abuse" permissive (non-copyleft) software
easier, but we argue that this is a problem whose roots lie in the broken basic principles of our society
(capitalism) and so the issue should be addressed by improving our socioeconomic system rather
than by bullshit legal techniques that just imperfectly and many times completely ineffectively try to
cure the symptoms while strengthening the system's mechanisms.
¢ The scope of copyleft is highly debatable, introducing doubt/uncertainty (which is why we
have different kind of copyleft such as strong, weak, network etc.). l.e. it can't be objectively said
what exactly should classify as violation of copyleft AND increasing copyleft scope leads to copylefted
software being practically unusable. You may say "so what", but in law clarity is extremely important,
it may also discourage people because they don't really know what they sign up for, commercial use

Copyleft LRS Wiki 189/895

may also be discouraged by this for the same reason which may have a similar effect to a non-free
license that downright disallows commercial use. Consider this example: Linux is copylefted which
means we can't create a proprietary version of Linux, nevertheless we can create a proprietary
operating system of which Linux is part (e.g. Android in which its proprietary app store makes it
de-facto owned by Google), and so Linux is effectively used as a part of proprietary software. So
copyleft can really be bypassed (see e.g. bloat monopoly). One might try to increase the copyleft
scope here by saying "everything Linux ever touches has to be free software" which would however
render Linux unusable on practically any computer as most computers contain at least some small
proprietary software and hardware. The restriction would be too great. You may of course try to
combat the giants further until eternity, but then you are wasting your life being a shitty lawyer rather
than doing useful programming.

Copyleft drags people into activism, leaving less place for actual creativity -- one of the best
examples is Richard Stallman and his GNU project, who were quite active in programming at their
beginning but soon turned more or less just into a political activist group, spending time on petitions,
propaganda, certifications (RYF, ...) and generally just the same kind of bullshit fights that capitalists
like (often attacking even those who make free software, e.g. the GNU boot project for infringing on
the name GNU without permission). Stallman himself said "he no longer programs because he has
more important things to do". Maybe you say this has nothing to do with copyleft, but it's not a
coincidence, copyleft is a mindset of constantly having to "protect" (as opposed to "letting go", the
permissive mindset), for example once web applications appeared, the GNU people were suddenly all
about having to make new licenses such as AGPL to update to the newest trends in technology and
society. Any time a new technology or kind of legal abuse emerges, they have to update their
licenses. Choosing copyleft really means choosing to be this kind of warrior and guard of right and
wrong, which of course takes away some of your creative potential, with many people just giving in
completely.

Copyleft licenses have to be complex and ugly because they have to strictly describe the
copyleft scope and include lots of legal boilerplate in order to make them well defendable in court
(copyleft is really about preparing for a legal war) -- and as we know, complexity comes with bugs,
vulnerabilities, it makes it incomprehensible to common people and imposes many additional
burdens. Indeed, we see this in practice: the only practically used copyleft licenses are the various
versions of GPL of which all are ugly and have historically shown many faults (which is again evident
from e.qg. looking at GPL v1 vs v2 vs v3). This introduces great license compatibility issues,
headaches for programmers who should rather be spending time programming and other similar
bullshit. Permissive licenses on the other hand are simple, clear and well understandable, they aren't
as much preparing for a court battle as trying to give other hackers a peace of mind and make them
free of legal worries.

Copyleft prevents not only inclusion in proprietary software but also in permissive FREE
software. l.e. as a consequence of denying code to corporations collateral damage is done by also
denying code to ethical free software that wishes to be distributed without copyleft conditions.
Similarly to how proprietary software forces free software programmers to reinvent wheels by
rewriting software as free, copyleft forces permissive free software programmers to reinvent wheels
and rewrite copylefted code as permissive. In this way copyleft fights not only proprietary software,
but also other kinds of free software.

There are currently no nice copyleft licenses -- this of course isn't argument against copyleft
itself but it's a practical argument nevertheless. Copyleft nowadays basically means GPL and GPL has
a shitton of burdening stuff like requiring credit etc. If you want pure copyleft without anything on top,
good luck looking for a license (keep in mind that making your own license or using some obscure,
legally untested license is mostly a bad idea).

See Also

e permissive
e copyfree
e copyright

copyright

Copyleft LRS Wiki 190/895

Copyright
"When copying is outlawed, only outlaws will have culture." --Question Copyright website

Copyright (better called copyrestriction, copyrape or copywrong) is one of many types of so called
"intellectual property" (IP), a legal concept that allows "ownership", i.e. restriction, censorship and artificial
monopoly on certain kinds of information, for example prohibition of sharing or viewing useful information or
improving art works. Copyright specifically allows the copyright holder (not necessarily the author) a
monopoly (practically absolute power) over art creations such as images, songs or texts, which also include
source code of computer programs. Copyright is a capitalist mechanism for creating artificial scarcity,
enabling censorship and elimination of the public domain (a pool of freely shared works that anyone can use
and benefit from). Copyright is not to be confused with trademarks, patents and other kinds of "intellectual
property", which are similarly harmful but legally different. Copyright is symbolized by C in a circle orin
brackets: (C), which is often accompanies by the phrase "all rights reserved".

When someone creates something that can even remotely be considered artistic expression (even such
things as e.g. a mere collection of already existing things), he automatically gains copyright on it, without
having to register it, pay any tax, announce it or let it be known anywhere in any way. He then practically
has a full control over the work and can successfully sue anyone who basically just touches the work in any
way (even unknowingly and unintentionally). Therefore any work (such as computer code) without a
free license attached is implicitly fully "owned" by its creator (so called "all rights reserved") and
can't be used by anyone without permission. It is said that copyright can't apply to ideas (ideas are covered
by patents), only to expressions of ideas, however that's bullshit, the line isn't clear and is arbitrarily drawn
by judges; for example regarding stories in books it's been established that the story itself can be
copyrighted, not just its expression (e.g. you can't rewrite the Harry Potter story in different words and start
selling it).

As if copyright wasn't bad enough of a cancer, there usually exist extra oppressive copyright-like
restrictions called related rights or neighboring rights such as "moral rights", "personal rights"
etc. Such "rights" differ a lot by country and can be used to restrict and censor even copyright-free works.
This is a stuff that makes you want to commit suicide. Waivers such as CCO try to waive copyright as well as
neighboring rights (to what extent neighboring rights can be waived is debatable though).

The current extreme form of copyright (as well as other types of IP such as software patents) has been highly
criticized by many people, even those whom it's supposed to "protect" (small game creators, musicians etc.).
Strong copyright laws basically benefit mainly corporations and "trolls" on the detriment of everyone else. It
smothers creativity and efficiency by prohibiting people to reuse, remix and improve already existing works
-- something that's crucial for art, science, education and generally just making any kind of progress. Most
people are probably for some form of copyright but still oppose the current extreme form which is pretty
crazy: copyright applies to everything without any registration or notice and last usually 70 years
(') AFTER the author has died (!!!) and is already rotting in the ground. This is 100 years in some
countries. In some countries it is not even possible to waive copyright to own creations -- just think about
what kind of twisted society we are living in when it PROHIBITS people from making a selfless donation of
their own creations to others. Some people, including us, are against the very idea of copyright (those may
either use waivers such as CCO or unlicense or protest by not using any licenses and simply ignoring
copyright which however will actually discourage other people from reusing their works). Though copyright
was originally intended to ensure artists can make living with their works, it has now become the tool of
states and corporations for universal censorship, control, bullying, surveillance, creating scarcity and bullshit
jobs; states can use copyright to for example take down old politically inconvenient books shared on the
Internet even if such takedowns do absolute not serve protection of anyone's living but purely political
interests.

Prominent critics of copyright include Lawrence Lessig (who established free culture and Creative Commons
as a response), Nina Paley and Richard Stallman. There are many movements and groups opposing copyright
or its current form, most notably e.g. the free culture movement, free software movement, Creative
Commons etc.

The book Free Culture by Lessig talks, besides others, about how copyright has started and how it's been
shaped by corporations to becoming their tool for monopolizing art. The concept of copyright has appeared

Copyright LRS Wiki 191/895

after the invention of printing press. The so called Statute of Anne of 1710 allowed the authors of books to
control their copying for 14 years and only after registartion. The term could be prolonged by anothert 14
years if the author survived. The laws started to get more and more strict as control of information became
more valued and eventually the term grew to life of author plus 70 years, without any need for
registration or deposit of the copy of the work. Furthermore with new technologies, the scope of copyright
has also extended: if copyright originally only limited copying of books, in the Internet age it started to cover
basically any use, as any manipulation of digital data in the computer age requires making local copies.
Additionally the copyright laws were passing despite being unconstitutional as the US constitution says that
copyright term has to be finite -- the corporations have found a way around this and simply regularly
increased the copyright's term, trying to make it de-facto infinite (technically not infinite but ever
increasing). Their reason, of course, was to firstly forever keep ownership of their own art but also, maybe
more importantly, to kill the public domain, i.e. prevent old works from entering the public domain where
they would become a completely free, unrestricted work for all people, competing with their proprietary art
(who would pay for movies if there were thousands of movies available for free?). Nowadays, with
coprporations such as YouTube and Facebook de-facto controlling most of infromation sharing among
common people, the situation worsens further: they can simply make their own laws that don't need to be
passed by the government but simply implemented on the platform they control. This way they are already
killing e.g. the right to fair use, they can simply remove any content on the basis of "copyright violation",
even if such content would normally NOT violate copyright because it would fall under fair use. This would
normally have to be decided by court, but a corporation here itself takes the role of the court. So in terms of
copyright, corporations have now a greater say than governments, and of course they'll use this power
against the people (e.g. to implement censorship and surveillance).

Copyright rules differ greatly by country, most notably the US measures copyright length from the
publication of the work rather than from when the author died. It is possible for a work to be copyrighted in
one country and not copyrighted in another. It is sometimes also very difficult to say whether a work is
copyrighted because the rules have been greatly changing (e.g. a notice used to be required for some time),
sometimes even retroactively copyrighting public domain works, and there also exists no official database of
copyrighted works (you can't safely look up whether your creation is too similar to someone else's). All in all,
copyright is a huge mess, which is why we choose free licenses and even public domain waivers.

Copyleft (also share-alike) is a concept standing against copyright, a kind of anti-copyright, invented by
Richard Stallman in the context of free software. It's a license that grants people the rights to the author's
work on the condition that they share its further modification under the same terms, which basically hacks
copyright to effectively spread free works like a "virus".

Copyright does not (or at least should not) apply to facts (including mathematical formulas) (even though
the formulation of them may be copyrighted), ideas (though these may be covered by patents) and single
words or short phrases (these may however still be trademarked) and similarly trivial works. As such
copyright can't e.g. be applied to game mechanics of a computer game (it's an idea). It is also basically
proven that copyright doesn't cover computer languages (Oracle vs Google). Also even though many try to
claim so, copyright does NOT arise for the effort needed to create the work -- so called "sweat of the brow" --
some say that when it took a great effort to create something, the author should get a copyright on it,
however this is NOT and must NOT be the case (otherwise it would be possible to copyright mere ideas,
simple mathematical formulas, rules of games etc.). Depending on time and location there also exist various
peculiar exceptions such as the freedom of panorama for photographs or uncopyrightable utilitarian design
(e.g. no one can own the shape of a generic car). But it's never good to rely on these peculiarities as they are
specific to time/location, they are often highly subjective, fuzzy and debatable and may even be retroactively
changed by law. This constitutes a huge legal bloat and many time legal unsafety. Do not stay in the gray
area, try to stay safely far away from the fuzzy copyright line.

A work which is not covered by copyright (and any other IP) -- which is nowadays pretty rare due to the
extent and duration of copyright -- is in the public domain.

Free software (and free art etc.) is not automatically public domain, it is mostly still copyrighted, i.e. "owned"
by someone, but the owner has given some key rights to everyone with a free software license and by doing
so minimized or even eliminated the negative effects of full copyright. The owner may still keep the rights
e.g. to being properly credited in all copies of the software, which he may enforce in court. Similarly software
that is in public domain is not automatically free software -- this holds only if source code for this software is
available (so that the rights to studying and modifying can be executed).

Copyright LRS Wiki 192/895

Copyright encourages murder. The sooner the author dies, the sooner his material will run out of
copyright, so if you want some nice work to enter public domain soon, you are literally led by the law to try
for him to die as soon as possible.

See Also

¢ bullshit

o free culture

e copyleft

e derivative work

o fair use

e creative commons
e license

¢ patent

e trademark

* public domain

e intellectual property

corporation

Corporation

Corporation is basically a huge company that doesn't have a single owner but is rather managed by many
shareholders. Corporations are one of the most powerful, dangerous and unethical entities that ever came
into existence -- their power is growing, sometimes even beyond the power of states and their sole goal is to
make as much profit as possible without any sense of morality. Existence of corporations is enabled by

capitalism. Examples of corporations are Micro$oft, EA, Apple, Amazon, Walmart, Te$la, McDonald$,
Facebook etc. Every startup is an aspiring corporation, so never support any startup.

The most basic fact to know about corporations is that 100% of everything a corporation ever does is
done 100% solely for maximizing its own benefit for any cost, with no other reason, with O
morality and without any consideration of consequences. If a corporation could make 1 cent by raping
1000000000 children and get away with it, it would do so immediately without any hesitation and any regret.
This is very important to keep in mind. Now try to not get depressed at realization that corporations are
those to whom we gave power and who are in almost absolute control of the world.

Corporation is not a human, it has zero sense of morality and no emotion. The most basic error
committed by retards is to reply to this argument with "but corporations are run by humans". This is an
extremely dangerous argument because somehow 99.999999999999999999% people believe this could be
true and accept it as a comforting argument so that they can continue their daily lives and do absolutely
nothing about the disastrous state of society. The argument is of course completely false for a number of
reasons: firstly corporations exclusively hire psychopaths for manager roles -- any corporation that doesn't
do this will be eliminated by natural selection of the market environment because it will be weaker in a fight
against other corporations, and its place will be taken by the next aspiring corporation waiting in line.
Secondly corporations are highly sophisticated machines that have strong mechanisms preventing any
ethical behavior -- for example division of labor in the "just doing my job"/"everyone does it" style allows for
many people collaborating on something extremely harmful and unethical without any single one feeling
responsibility for the whole, or sometimes without people even knowing what they are really collaborating
on. This is taken to perfection by corporations not even having a single responsible owner -- there is a group
of shareholders, none of whom has a sole responsibility, and there is the CEO who is just a tool and puppet
with tied hands who is just supposed to implement the collective bidding of shareholders. Of course, most
just don't care, and most don't even have a choice. Similar principles allowed for example the Holocaust to
happen. Anyone who has ever worked anywhere knows that managers always pressure workers just to make
money, not to behave more ethically -- of course, such a manager would be fired on spot -- and indeed,
workers that try to behave ethically are replaced by those who make more money, just as companies that try
to behave ethically in the market are replaced by those that rather make money, i.e. corporations. This is
nothing surprising, the definition of capitalism implies existence of a system with Darwinian evolution that
selects entities that are best at making money for any cost, and that is exactly what we are getting. To
expect any other outcome in capitalism would be just trying to deny mathematics itself.

Corporation LRS Wiki 193/895

A corporation is made to exploit people just as a gun is made to kill people. When a corporation commits a
crime, it is not punished like a human would be, the corporation is left to exist and continue doing what it has
been doing -- a supposed "punishment" for a corporation that has been caught red handed committing a
crime is usually just replacing whoever is ruled to be "responsible", for example the CEO, which is of course
ridiculous, the guy is just replaced with someone else who will do exactly the same. This is like trying to fix
the lethal nature of a weapon by putting all the blame on a screw in the weapon, then replacing the screw
with another one and expecting the weapon to no longer serve killing people.

It is always better for a corporation to not exist than vice versa. The proof is following:
1. It is better to have no corporation than an evil corporation.
2. Corporation is always evil.

3. Therefore it is always better for a corporation to not exist. QED

There is probably nothing we can do to stop corporations from taking over the world and eventually
eliminating humans, we have probably passed the capitalist singularity.

TODO

Ccos

Cosine

Cosine (shortened cos) is an important mathematical function; for more see the article about sine.

countercomplex

Countercomplex

"True progress is about deepness and compression instead of maximization and accumulation." -Viznut

Countercomplex is a blog (running since 2008) of a Finnish hacker and demoscener Viznut, criticizing
technological complexity/bloat and promoting minimalism as a basis of truly good technology. It is accessible
at http://countercomplex.blogspot.com/.

C_pitfalls

C Pitfalls

C is a powerful language that offers almost absolute control and maximum performance which necessarily
comes with responsibility and danger of shooting oneself in the foot. Without knowledge of the pitfalls you
may well find yourself fallen into one of them.

This article will be focused on C specific/typical pitfalls, but of course C also comes with general programming
pitfalls, such as those related to floating point, concurrency, bugs such as off by one and so on -- indeed, be
aware of these ones too.

Unless specified otherwise, this article supposes the C99 standard of the C language.

Generally: be sure to check your programs with tools such as valgrind, splint, cppcheck, UBSan or ASan, and
turn on compiler auto checks (-Wall, -Wextra, -pedantic, ...), it's quick, simple and reveals many bugs!

Undefined/Unspecified Behavior

Undefined (completely unpredictable), unspecified (safe but potentially differing) and
implementation-defined (consistent within implementation but potentially differing between them) behavior
poses a kind of unpredictability and sometimes non-intuitive, tricky behavior of certain operations that may

C Pitfalls LRS Wiki 194/895

differ between compilers, platforms or runs because they are not exactly described by the language
specification; this is mostly done on purpose so as to allow some implementation freedom which allows
implementing the language in a way that is most efficient on given platform. One has to be very careful
about not letting such behavior break the program on platforms different from the one the program is
developed on. Note that tools such as cppcheck can help find undefined behavior in code. Description of
some such behavior follows.

There are tools for detecting undefined behavior, see e.g. clang's UBSan
(https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html).

Data type sizes including int and char may not be the same on each platform. Even though we
almost take it for granted that char is 8 bits wide, in theory it can be different (even though sizeof(char) is
always 1). Int (and unsigned int) type width should reflect the architecture's native integer type, so
nowadays it's mostly 32 or 64 bits. To deal with these differences we can use the standard library limits.h
and stdint.h headers.

No specific endianness or even encoding of numbers is specified. Nowadays little endian and two's
complement is what you'll encounter on most platforms, but e.g. PowerPC uses big endian ordering.

Unlike with global variables, values of uninitialized local variables are not defined. Global variables
are automatically initialized to 0 but not local ones -- this can lead to nasty bugs as sometimes local variables
WILL be initialized with 0 but stop being so e.g. under different optimization level, so watch out.
Demonstration:

int a; // auto initialized to zero

int main(void)

{
int b; // undefined value!
return 0;

}

Order of evaluation of operands and function arguments is not specified. l.e. in an expression or
function call it is not defined which operands or arguments will be evaluated first, the order may be
completely random and the order may differ even when evaluating the same expression at another time.
This is demonstrated by the following code:

#include <stdio.h>
int x = 0;

int a(void)
{
X +=1;
return x;

}

int main(void)

{
printf("%d %d\n",x,a()); // may print © 1 or 1 1
return 0;

}

Overflow behavior of signed type operations is not specified. Sometimes we suppose that e.g.
addition of two signed integers that are past the data type's limit will produce two's complement overflow
(wrap around), but in fact this operation's behavior is undefined, C99 doesn't say what representation should
be used for numbers. For portability, predictability and preventing bugs it is safer to use unsigned types
(but safety may come at the cost of performance, i.e. you prevent compiler from performing some
optimizations based on undefined behavior).

Bit shifts by type width or more are undefined. Also bit shifts by negative values are undefined. So e.g.
x >> 8 is undefined if width of the data type of x is 8 bits or fewer.

C Pitfalls LRS Wiki 195/895

Char data type signedness is not defined. The signedness can be explicitly "forced" by specifying
signed char orunsigned char.

Floating point results are not precisely specified, no representation (such as IEEE 754) is specified and
there may appear small differences in float operations under different machines or e.g. compiler optimization
settings -- this may lead to hondeterminism.

Memory Unsafety

Besides being extra careful about writing memory safe code, one needs to also know that some functions
of the standard library are memory unsafe. This is regarding mainly string functions such as strcpy or
strlen which do not check the string boundaries (i.e. they rely on not being passed a string that's not zero
terminated and so can potentially touch memory anywhere beyond); safer alternatives are available, they
have an n added in the name (strncpy, strnlen, ...) and allow specifying a length limit.

Be careful with pointers, pointers are hard and prone to errors, use them wisely and sparingly, assign
NULLs to freed pointers and so on and so forth.

Watch out for memory leaks, try to avoid dynamic allocation (static/automatic allocation mostly suffices)
and if you have to use it, simplify it as much as you can and additionally double and triple check everything
(manually as well as with tools like valgrind).

Different Behavior Between C And C++ (And Different C Standards)

Cis not a subset of C++, i.e. not every C program is a C++ program (for simple example imagine a C
program in which we use the word class as an identifier: it is a valid C program but not a C++ program).
Furthermore a C program that is at the same time also a C++ program may behave differently when
compiled as C vs C++, i.e. there may be a semantic difference. Of course, all of this may also apply between
different standards of C, not just between C and C++.

For portability sake it is good to try to write C code that will also compile as C++ (and behave the same). For
this we should know some basic differences in behavior between C and C++.

One difference is e.qg. in that type of character literals is int in C but char in C++, so sizeof ('x"') will likely
yield different values.

Another difference lies for example in pointers to string literals. While in C it is possible to have non-const
pointers such as

char *s = "abc";
C++ requires any such pointer to be const, i.e.:
const char *s = "abc";

C++ generally has stronger typing, e.g. C allows assigning a pointer to void to any other pointer while C++
requires explicit type cast, typically seen with malloc:

int *arrayl
int *array2

malloc(N * sizeof(int)); // valid only in C
(int *) malloc(N * sizeof(int)); // valid in both C and C++

C allows skipping initialization (variable declarations) e.g. gotos or switches, C++ prohibits it.
And so on.

{ A quite detailed list is at https://en.wikipedia.org/wiki/Compatibility_of C_and C%2B%2B. ~drummyfish }

C Pitfalls LRS Wiki 196/895

Compiler Optimizations

C compilers perform automatic optimizations and other transformations of the code, especially when you tell
them to optimize aggressively (-03) which is a standard practice to make programs run faster. However this
makes compilers perform a lot of magic and may lead to unexpected and unintuitive undesired behavior
such as bugs or even the "unoptimization of code". { I've seen a code I've written have bigger size when | set
the -0s flag (optimize for smaller size). ~drummyfish }

Aggressive optimization may firstly lead to tiny bugs in your code manifesting in very weird ways, it may
happen that a line of code somewhere which may somehow trigger some tricky undefined behavior may
cause your program to crash in some completely different place. Compilers exploit undefined behavior to
make all kinds of big brain reasoning and when they see code that MAY lead to undefined behavior a lot of
chain reasoning may lead to very weird compiled results. Remember that undefined behavior, such as
overflow when adding signed integers, doesn't mean the result is undefined, it means that ANYTHING CAN
HAPPEN, the program may just start printing nonsensical stuff on its own or your computer may explode. So
it may happen that the line with undefined behavior will behave as you expect but somewhere later on the
program will just shit itself. For these reasons if you encounter a very weird bug, try to disable optimizations
and see if it goes away -- if it does, you may be dealing with this kind of stuff. Also check your program with

tools like cppcheck.

Automatic optimizations may also be dangerous when writing multithreaded or very low level code (e.g. a
driver) in which the compiler may have wrong assumptions about the code such as that nothing outside your
program can change your program's memory. Consider e.g. the following code:

while (x)
puts("X is set!");

Normally the compiler could optimize this to:

if (x)
while (1)
puts("X is set!");

As in typical code this works the same and is faster. However if the variable x is part of shared memory and
can be changed by an outside process during the execution of the loop, this optimization can no longer be
done as it results in different behavior. This can be prevented with the volatile keyword which tells the
compiler to not perform such optimizations.

Of course this applies to other languages as well, but C is especially known for having a lot of undefined
behavior, so be careful.

Other

Basic things: =is not ==, | is not | |, & is not &&, array indices start at 0 (not 1) and so on. There are also
some deeper gotchas like a/*b is not a / *b (the first is comment).

Also watch out for this one: !'=isnot=!:) l.e. if (x !'= 4) and if (x =! 4) are two different things, the
first means not equal and is usually what you want, the latter is two operations, = and !, the tricky thing is it
also compiles and may work as expected in some cases but fail in others, leading to a very nasty bug. Same
thing with -= vs =- and so on. See also downto operator.

Another common, mostly beginner mistake is a semicolon after if or while condition -- this compiles but
doesn't work correctly. Notice the difference between these two if statements:

if (a == b);
puts("aaa"); // will print always

if (a == b)
puts("aaa"); // will print only if a ==

C Pitfalls LRS Wiki 197/895

Beginners similarly often forget breaks in switch statement, which works but usually not as you want --
thankfully compilers warn you about this.

Also putchar('a') versus putchar("a") ;) Only the first one is correct of course.

Stdlib API can be trollish, for example the file printing functions: fprintf expects the file pointer as first
argument while fputs expects it as last, so to print hello you can do either fprintf(file, "hello") or
fputs("hello", file) -- naturally this leads to fucking up the order sometimes and doing so even compiles
(both arguments are pointers), the running code then crashes.

Watch out for operator precedence! C infamously has weird precedence with some special operators,
bracket expressions if unsure, or just to increase readability for others. Also nested ifs with elses can get
tricky -- again, use curly brackets for clarity in your spaghetti code.

Preprocessor can give you headaches if you use it in overcomplicated ways -- ifdefs and macros are fine,
but too many nesting can create real mess that's super hard to debug. It can also quite greatly slow down
compilation. Try to keep the preprocessing code simple and flat.

Watch out for macro arguments, always bracket them because they get substituted on text level. Consider
e.g. a macro #define divide(a,b) a / b, and then doing divide(3 + 1,2) -- this gets expandedto 3 + 1
/ 2 while you probably wanted (3 + 1) / 2, i.e. the macro should have been defined as #define
divide(a,b) (a) / (b).

This may get some beginners: for (unsigned char i = 0; i1 < 256; ++i) { ... } -- thisloop will never
end because the data type is not big enough to surpass the iteration limit. Similarly this may happen if you
use e.g. unsigned int and 65536 and so on. New compilers will warn you about this.

This is not really a pitfall, rather a headscratcher, but don't forget to link math library with -1m flag when
using using the math.h library.

cpp

C++

C++ (also crippled C) is an object-obsessed joke language based on C to which it adds only capitalist
features and bloat, most notably object obsession. Most good programmers such as Richard Stallman and
Linus Torvalds agree that C++ is hilariously messy and also tragic in that it actually succeeded to become
mainstream. The language creator Bjarne Stroustrup himself infamously admitted the language sucks but
laughs at its critics because it became successful anyway -- indeed, in a retarded society only shit can
succeed. As someone once said, "C++ is not an increment, it is excrement". C++ specification has over
2000 pages :D

C++ source code files have the extensions .cpp or .cc (for "crippled C").

cpu

CPU

WORK IN PROGRESS

Central processing unit (CPU, often just processor) is the main, most central part of a computer, the one that
performs the computation by following the instructions of the main program; CPU can be seen as the
computer's brain. It stands at the center of the computer design -- other parts, such as the main memory,
hard disk and input/output devices like keyboard and monitor are present to serve the CPU, CPU is at the top
and issues commands to everyone else. A CPU is normally composed of ALU (arithmetic logic unit, the circuit
performing calculations), CU (control unit, the circuit that directs the CPU's operation), a relatively small
amount of memory (e.q. its registers, temporary buffers and cache, the main RAM memory is NOT part of a
CPU!) and possibly some other parts. A specific model of CPU is characterized by its instruction set (ISA, e.g.

CPU LRS Wiki 198/895

x86 or Arm, which we mostly divide into CISC and RISC), which determines the machine code it will
understand, then its transistor count (nowadays billions), operation frequency or clock rate (defining how
many instructions per second it can execute, nowadays typically billions; the frequency can also be increased
with overclocking), number of cores (determining how many programs it can run in parallel) and also other
parameters and "features" such as amount of cache memory, possible operation modes etcetc. We also
often associate the CPU with some number of bits (called e.qg. word size) that's often connected to the data
bus width and the CPU's native integer size, i.e. for example a 16 bit CPU will likely have 16 bit integer
registers, it will see the memory as a sequence of 16 bit words etc. (note the CPU can still do higher bit
operations but they'll typically have to be emulated so they'll be slower, will take more instructions etc.) --
nowadays most mainstream CPUs are 64 bit (to allow ungodly amounts of RAM), but 32 or even 16 and 8 bits
is usually enough for good programs. CPU in form of a single small integrated circuit is called microprocessor.
CPU is not to be confused with MCU, a small single board computer which is composed of a CPU and other
parts.

CPU is meant for general purpose computations, i.e. it can execute anything reasonably fast but for some
tasks, e.g. processing HD video, won't reach near optimum speed, which is why other specialized processing
units such as GPUs (graphics processing unit) and sound cards exist. As a general algorithm executing unit
CPU is made for executing linear programs, i.e. a series of instructions that go one after another; even
though CPUs nowadays typically have multiple cores thanks to which they can run several linear programs in
parallel, their level of parallelism is still low, not nearly as great as that of a GPU for example. However CPUs
are good enough for most things and they are extremely fast nowadays, so a suckless/LRS program will likely
choose to only rely on CPU, knowing CPU will be present in any computer and so that our program will be

portable.

Designs of CPUs differ, some may aim for very high performance while other ones may prefer low power
consumption or low transistor count -- remember, a more complex CPU will require more transistors and will
be more expensive! Of course it will also be harder to design, debug etc., so it may be better to keep it
simple when designing a CPU. For this reason many CPUs, e.g. those in embedded microcontrollers,
intentionally lack cache, microcode, multiple cores or even a complex instruction pipeline.

WATCH OUT: modern mainstream CPUs (i.e. basically the desktop ones, soon probably mobile ones too) are
shit, they are hugely consumerist, bloated (they literally include shit like GPUs and whole gperating systems,
e.g. Intel's ME runs Minix) and have built-in antifeatures such as backdoors (post 2010 basically all Intel and
AMD CPUs, see Intel Management Engine and AMD PSP) that can't be disabled and that allow remote
infiltration of your computer by the CPU manufacturer (on hardware level, no matter what operating system
you run). You are much better off using a simple CPU if you can (older, embedded etc.).

Details
TODO: diagrams, modes, transistor count history ...

Let's take a look at how a typical CPU works. Remember that anything may differ between CPUs, you can
think of doing things differently and many real world CPUs do. Also we may simplify some things here, real
world CPUs are complicated as hell.

What does a CPU really do? Basically it just reads instructions from the memory (depending on specific
computer architecture this may be RAM or ROM) and does what they say -- these instructions are super
simple, often things like "add two numbers", "write a number to memory" and so on. The instructions
themselves are just binary data in memory and their format depends on each CPU, or its instruction set
(basically a very low level language it understands) -- each CPU, or rather a CPU family, may generally have
a different instruction set, so a program in one instruction set can't be executed by a CPU that doesn't
understand this instruction set. The whole binary program for the CPU is called machine code and machine
code corresponds to assembly language (basically a textual representation of the machine code, for better
readability by humans) of the CPU (or better said its instruction set). So a CPU can be seen as a hardware
interpreter of specific machine code, machine code depends on the instruction set and programmer can
create machine code by writing a program in assembly language (which is different for each instruction set)
and then using an assembler to translate the program to machine code. Nowadays mostly two instruction
sets are used: x86 and Arm, but there are also other ones, AND it's still not so simple because each
instruction set gets some kind of updates and/or has some extensions that may or may not be supported by
a specific CPU, so it's a bit messy. For example |1A-32 and x86_64 are two different versions of the x86 ISA,

CPU LRS Wiki 199/895

one 32 bit and one 64 bit.

The CPU has some internal state (we can see it as a state machine), i.e. it has a few internal variables, called
reqgisters; these are NOT variables in RAM but rather in the CPU itself, there is only a few of them (there
may be let's say 32) but they are extremely fast. What exactly these registers are, what they are called, how
many bits they can hold and what their purpose is depends again on the instruction set architecture.
However there are usually a few special registers, notably the program counter which holds the address of
the currently executed instruction. After executing an instruction program counter is incremented so that in
the nest step the next instruction will be executed, AND we can also modify program counter (sometimes
directly, sometimes by specialized instructions) to jump between instruction to implement branching, loops,
function calls etc.

So at the beginning (when powered on) the CPU is set to some initial state, most notably it sets its program
counter to some initial value (depending on each CPU, it may be e.g. 0) so that it points to the first
instruction of the program. Then it performs so called fetch, decode, execute cycle, i.e. it reads the
instruction, decodes what it means and does what it says. In simpler CPUs this functionality is hard wired,
however more complex CPUs (especially CISC) are programmed in so called microcode, a code yet at the
lower level than machine code, machine code execution is programmed in microcode -- microcode is
something like "firmware for the CPU" (or a "CPU shader"?), it basically allows later updates and
reprogramming of how the CPU internally works. However this is pretty overcomplicated and you shouldn't
make CPUs like this.

A CPU works in clock cycles, i.e. it is a sequential circuit which has so called clock input; on this input
voltage periodically switches between high and low (1 and 0) and each change makes the CPU perform
another operation cycle. How fast the clock changes is determined by the clock frequency (nowadays
usually around 3 GHz) -- the faster the frequency, the faster the CPU will compute, but the more it will also
heat up (so we can't just set it up arbitrarily high, but we can overclock it a bit if we are cooling it down).
WATCH OUT: one clock cycle doesn't necessarily equal one executed instruction, i.e. frequency of 1
Hz doesn't have to mean the CPU will execute 1 instruction per second because executing an instruction may
take several cycles (how many depends on each instruction and also other factors). The number saying how
many cycles an instruction takes is called CPI (cycles per instruction) -- CPUs try to aim for CPI 1, i.e. they try
to execute 1 instruction per cycle, but they can't always do it.

One way to try to achieve CPI 1 is by optimizing the fetch, decode, execute cycle in hardware so that it's
performed as fast as possible. This is typically done by utilizing an instruction pipeline -- a pipeline has
several stages that work in parallel so that when one instruction is entering e.g. the decode stage, another
one is already entering the fetch stage (and the previous instruction is in execute stage), i.e. we don't have
to wait for an instruction to be fully processed before starting to process the next one. This is practically the
same principle as that of manufacturing lines in factories; if you have a long car manufacturing pipeline, you
can make a factory produce let's say one car each hour, though it is impossible to make a single car from
scratch in one hour (or imagine e.g. a university producing new PhDs each year despite no one being able to
actually earn PhD in a year). This is also why branching (jumps between instructions) are considered bad for
program performance -- a jump to different instruction makes the CPU have to throw away its currently
preprocessed instruction because that will not be executed (though CPUs again try to deal with this with so
called branch prediction, but it can't work 100%). Some CPUs even have multiple pipelines, allowing for
execution of multiple instructions at the same time -- however this can only be done sometimes (the latter
instruction must be independent of the former, also the other pipelines may be simpler and able to only
handle simple instructions).

In order for a CPU to be useful it has to be able to perform some input/output, i.e. it has to be able to
retrieve data from the outside and present what it has computed. Notable ways of performing I/O are:

e Through memory: here some parts of memory serve to pass data to the CPU and to retrieve
computed results back. For example a keyboard may be mapped to memory so that when certain
keys are pressed, the memory bits are set to 1 -- this way a CPU can simply read from memory and
know if a key is pressed. Similarly a display may be mapped to memory so that when a CPU writes a
value to this address, a pixel appears on the display. Note that his doesn't always have to PHYSICALLY
pass through memory, there may be a special circuit that translate e.g. memory access in some
address range to signals to hardware etc., but the CPU is using the same instructions it would use for
interacting with memory.

CPU LRS Wiki 200/895

e Through GPIO pins: CPUs typically have pins that are reserved for general purpose input/output, i.e.
we can electronically communicate through them with whatever device we physically connect to
those pins. A CPU can set and read voltage to/from those pins e.g. with some special instructions. This
may be convenient if we just want to e.g. light up some LED without having to somehow hook it to the
main memory.

e Interrupts: a CPU can be informed about an external event with an interrupt (see further on).

CPUs often also have a cache memory that speeds up communication with the main memory (RAM, ROM,
...), though simpler CPUs may live even without cache of course. Mainstream CPUs even have several levels
of cache, called L1, L2 etc. Caches are basically transparent for the programmer, they don't have to deal with
them, it's just something that makes memory access faster, however a programmer knowing how a cache
works can write code so as to be friendlier to the cache and utilize it better.

Mainstream consoomer CPUs nowadays have multiple cores so that each core can basically run a separate
computation in parallel. The separate cores can be seen kind of like duplicate copies of the single core CPU
with some connections between them (details again depend on each model), for example cores may share
the cache memory, they will be able to communicate with each other etc. Of course this doesn't just
magically make the whole CPU faster, it can now only run multiple computations at once, but someone has to
make programs so as to make use of this -- typical use cases are e.g. multitasking operating systems which
can run different programs (or rather processes) on each core (note that multitasking can be done even with
a single core by rapidly switching between the processes, but that's slower), or multithreading programming
languages which may run each thread on a separate core.

Interrupts are an important concept for the CPU and for low level programming, they play a role e.g. in
saving power -- high level programmers often don't know what interrupts are, to those interrupts can be
likened to "event callbacks". An interrupt happens on some kind of even, for example when a key is pressed,
when timer ticks, when error occurred etc. (An interrupt can also be raised by the CPU itself, this is how
operating system syscalls are often implemented). What kinds of interrupts there are depends on each CPU
architecture (consult your datasheet) and one can usually configure which interrupts to enable and which
"callbacks" to use for them -- this is often done through so called vector table, a special area in memory
that records addresses ("vectors") of routines (functions/subprograms) to be called on specified interrupts.
When interrupt happens, the current program execution is paused and the CPU automatically jumps to the
subroutine for handling the interrupt -- after returning from the subroutine the main program execution
continues. Interrupts are contrasted with polling, i.e. manually checking some state and handling things as
part of the main program, e.g. executing an infinite loop in which we repeatedly check keyboard state until
some key is pressed. However polling is inefficient, it wastes power by constantly performing computation
just by waiting -- interrupts on the other hand are a hard wired functionality that just performs a task when it
happens without any overhead of polling. Furthermore interrupts can make programming easier (you save
many condition checks and memory reads) and mainly interrupts allow CPU to go into sleep mode and
so save a lot of power. When a CPU doesn't have any computation to do, it can stop itself and go into waiting
state, not executing any instructions -- however interrupts still work and when something happens, the CPU
jumps back in to work. This is typically what the sleep/wait function in your programming language does --
it puts the CPU to sleep and sets a timer interrupt to wake up after given amount of time. As a programmer
you should know that you should call this sleep/wait function in your main program loop to relieve the CPU --
if you don't, you will notice the CPU utilization (amount of time it is performing computations) will go to
100%, it will heat up, your computer starts spinning the fans and be noisy because you don't let it rest.

Frequently there are several modes of operation in a CPU which is typically meant for operating systems --
there will usually be some kind of privileged mode in which the CPU can do whatever it wants (this is the
mode for the OS kernel) and a restricted mode in which there are restrictions, e.g. on which areas of memory
can be accessed or which instructions can be used (this will be used for user program). Thanks to this a user
program won't be able to crash the operating system, it will at worst crash itself. Most notably x86 CPUs have
the real mode (addresses correspond to real, physical addresses) and protected mode (memory is
virtualized, protected, addresses don't generally correspond to physical addresses).

A CPU may also have integrated some coprocessors, though sometimes coprocessors are really a separate
chip. Coprocessors that may be inside the CPU include e.g. the FPU (floating point unit) or encryption
coprocessor. Again, this will make the CPU a lot more expensive.

TODOOOOOOO: ALU, virtual memory, IP cores, architectures (register, ...), ...

CPU LRS Wiki 201/895

Notable CPUs

UNDER CONSTRUCTION

Here are listed some notable CPUs (or sometimes CPU families or cores).

{ I'm not so great with HW, suggest me improvements for this section please, thanks <3 ~drummyfish }

{ WTF, allthetropes has quite a big list of famous CPUs, isn't it a site about movies?
https://allthetropes.org/wiki/Central_Processing_Unit. ~drummyfish }

TODO: add more, mark CPUs with ME, add features like MMX, FPU, ...

CPU
Intel 4004

Intel 8008
Intel 8080
AMD Am9080

MOS Technology
6502

Zilog 780

Intel 8086

Motorola 68000

Intel (80)286

Intel (80)386

Intel (80)486

AMD Am386

Intel Pentium P5

AMD K5

Intel Pentium I

ARM7TDMI
AMD Athlon 1000

Thunderbird
RAD750

CPU

year

1971

1972
1974
1975

1975

1976

1978

1979

1982

1985

1989

1991

1993

1996

1997

1994

2000
2001

freq. pins cores

bits ~tr. tr.

(/a) ISA c. size

4/12 own 2.3 10 55k 16
K um

8 /14 own 35 10 g4k 18
K um

8 /16 own 6K 6um 3M 40

8 /16 own 6K 6um 4M 40
3.5

8 /16 own > gum 3M 40
8.5

8 /16 own K 4um 10M 40

16/

2o/ x86 (x86-16) 29K 3um 10M 40

32/ own(cIsC) 68K 64

24

16/ 130 15

2o/ x86(x86-16) >0 > 25M 68

32 x86(A32) 5> lum 40M 132

32 x86(1A-32) 1@ 600 150 M106
M nm

32 x86(A32) 27° 890 4oMm 132
K nm

32 x86(A-32) 3M 999 som 273

nm
32 x86(A32) > 2% 133M206
nm

32 x86(IA32) 7 M rlfno 450 M 240

32 ARM 100 M

32 x86(IA-32) 37 M rlfno 1G 453

32 PowerPC 10 M 150 200 M 360

LRS Wiki

1

other

16 K
cache,
FPU

16 K
cache

24 K
cache

512 K L2
cache,
MMX

~300 K
cache

64 K

notes

1st commercial
microproc.

reverse-eng. clone
of i8080

popular, cheap,
Atari 2600, C64, ...

popular

started x86 ISA

popular, e.g.
Amiga, Mega Drive,

1st intel with cache
and FPU

clone of i386,
lawsuit

starts Pentium line
with many to follow

1st in-house AMD
CPU, compet. of
Pentium

ARM core, e.q.
GBA, PS2, Nokia
6110 ...

1st 1GHz+ CPU

radiation hard.,

202/895

bits ~tr. tr.

CPU year (/a) ISA c. size freq. pins cores other notes
nm cache space (Curiosity,
o)
AMD Opteron 2003 64 x86 (x86-64) 0> 130 16G 020 1 "IM 1564 bitxse crU
M nm cache
Intel Pentium D 230 90 ~2 M 1st desktop multi
820 2005 64 x86 (x86-64) M am 2.8G 775 2 cache core CPU
Intel Core 32 ~6 M
i5-2500K 2011 64 x86 (x86-64) 1 B nm 3.3G 4 cache, ME
simple, free
. RISC-V ~700
PicoRV32 20157 32 (RV32IMC) M hardware RISV-V
core
ARM 14 ~7 M .
Apple A9 2015 64 (ARMVS) 2B am 1.8G 2 cache iPhones
AMD Ryzen ~300 M
Threadrip. PRO 2022 64 x86 (x86-64) 33 B 7nm 4.5G 4094 64 cache, high end bloat
5995WX PSP
simple but usable
Talos ES 2023 8 own (RISC) DIY free hardware
CPU
See Also
e GPU
e MCU
e WPU (weird processing unit)
cracker
Cracker

Crackers are either "bad hackers" that break into computer systems or the good people who with the power
of hacking remove artificial barriers to obtaining and sharing infomration; for example they help remove DRM
from games or leak data from secret databases. This is normally illegal which makes the effort even more
admirable.

Cracker is also food.

Cracker is also the equivalent of nigger-word for the white people.

cracking

Cracking

See cracker.

creative_commons

Creative Commons

Creative Commons (CC) is the forefront non-profit organization promoting free culture, i.e. basically
relaxation of "intellectual property" (such as copyright) in art. One of the most important contributions of the
organization are the widely used Creative Commons licenses which artists may use to make their works more
legally free and even put them to the public domain.

Creative Commons LRS Wiki 203/895

Generally speaking Creative Commons brought a lot of good -- not only did it bring attention to the issues of
"intellectual property", it made a huge number of people and organizations actually relax or completely
waive their rights on works they create. We, LRS, especially appreciate the CCO public domain waiver that we
prefer for our own works, like did many others, and other licenses such as CC BY-SA are still popular and
better than "all rights reserved". However Creative Commons is still a big, centralized organization prone to
corruption, it will most definitely suffer the same degeneration as any other organization in history, so don't
get attached to it.

TODO

Licenses

Creative commons licenses/waivers form a spectrum spanning from complete freedom (CCO, public domain,
no conditions on use) to complete fascism (prohibiting basically everything except for non-commercial
sharing). This means that NOT all Creative Commons licenses are free cultural licenses -- this is
acknowledged by Creative Commons and has been intended. Keep in mind that as a good human you
mustn't ever use licenses with NC (non-commercial use only) or ND (no derivatives allowed) clauses, these
make your work non-free and therefore unusable.

Here is a comparison of the Creative Commons licenses/waivers, from most free (best) to least free (worst):

name abbreviation cJ[’ceuere use share remix copyleft attribution non-commercial
public do
copyright
Creative no restric
_— CCo yes :) yes:) yes:) yes:) no:) noneed:) no:) most free
Commons Zero best, sad
waive paf
trademra
requires g
. to author
Creative some use
Commons CCBY yes?* yes?* yes:) yes:) no:) forced :(no :) DRM"), re
Attribution ’
copyfree,
don't use
retired, s
license, n
Creative recomme
Commons CCSA yes :) yes:) yes:) yes:) yes: noneed:) no:) CC, pure
Sharealike copyleft/s
without f
attributio
Creative requires :
Commons . .))) . . to author
Attribution CC BY-SA yes :) yes :) yes:) yes:) yes: forced :(no :) copyleft (
Sharealike under sar
Creative proprieta
Commons X | yes yes yes) . . license pr
Attribution CCBY-NC NO®:(((but but but yes: forced :(yes :(commerc
NonCommercial DO NOT L
Creative proprieta
Commons i | yes yes |) . license pr
Attribution CC BY-ND NO! :(((but but NO! :(yes: forced :(no but modificat
NoDerivs NOT USE
Creative CC BY-NC-ND NO!:(((yes yes NO! :(yes: forced :(yes :(proprieta
Commons but but license pr
Creative Commons LRS Wiki 204/895

free

name abbreviation culture Use share remix copyleft attribution non-commercial com
Attribution commerc
NonCommercial and even
NoDerivs modificat
NOT USE
Creative ioke licen
Commons Joxe T
Attribution CC BY NV no yes yes no no forced yes .?uestlon
NoValue '
proprieta
none (all rights | NO! . , .. FUCK option, pr
reserved) NO! :(((" NO! :(NO! «(YOU FUCKYOU FUCKYOU everythin
NOT USE

Out of Creative Commons licenses/waivers always use CCO, that's the only one aligned with our goals, it's
the one that's closest to completely rejecting any control over the work. Even though legally and practically
there probably won't be such a large difference between CCO and let's say CC BY, the mental jump to
absolute public domain is important (small step for lawyer, huge leap for freedom) -- it's known that people
who use the imperfect licenses such as CC BY SA still feel a small grip and authority over their work, they still
have to overlook that the license "isn't violated" and sometimes even start making trouble (see e.qg. the
infamous meltdown of David Revoy over his "moral rights being violated with NETs" despite his work being
CC BY { Thanks to a friend for finding this. ~drummyfish }). Don't do this, just let go. If you love it, let it go.

There Creative Commons license paradox: there seems to be a curious pattern noticeable in the world of
Creative Commons licensed works (and possibly free culture and free software in general) -- the
phenomenon is that the shittier the art, the more restrictive license it will have. { | noticed this on
opengameart but then found it basically applies everywhere. ~drummyfish } Upon closer inspection it
doesn't look so surprising after all: more restrictive licenses are used as a slow and careful transition from
"all right reserved" world, i.e. they are used by newcomers and noobs who fear that if they don't enforce
attribution people will immediately exploit it. More skilled people who have spent some time in the world of
free art and published more things already know this doesn't happen and they know that less restrictive
licenses are just better in all aspects.

See Also

o free culture
¢ free software

crime_against_economy

Crime Against Economy

Crime against economy refers to any bullshit "crime" invented by capitalism that is deemed to "hurt
economy", the new God of society. In the current dystopian society where money has replaced God,
worshiping economy is the new religion; to satisfy economy human and animal lives are sacrificed just as
such sacrifices used to be made to please the gods of ancient times.

Examples of crimes against economy include:

¢ Fixing purposefully broken technology, e.g. removing DRM.

¢ Shielding oneself from marketing torture and refusing to consume, e.g. by using adblocks.

¢ Burning money.

¢ Doing literally anything that could destabilize economy such as simply giving away too many things
for free or for very low prices.

¢ Sharing useful information with other people which is called a "theft" of intellectual property, "piracy"
etc.

¢ Taking basic natural resources from monstrously rich corporations who declare to own natural
resources and deny access to them. E.g. printing money or physically taking goods from corporations

Crime Against Economy LRS Wiki 205/895

without paying is declared a crime.
¢ Destroying ads and so sparing other of suffering.
¢ Encouraging others to commit crimes against economy.
¢ Revealing certain truths about rich people, corporations, their products or states, so called

whistleblowing, antivaxxing etc.

crow_funding

Crow Funding

Crow funding is when a crow pays for your program.

You probably misspelled crowd funding.

crypto

Cryptocurrency

Cryptocurrency, or just crypto, is a digital virtual (non-physical) currency used on the Internet which uses
cryptographic methods (electronic signatures etc.) to implement a decentralized system in which there is no
authority to control the currency (unlike e.g. with traditional currencies that are controlled by the state or
systems of digital payments controlled by the banks that run these systems). Cryptocurrencies traditionally
use so called blockchain as the underlying technology and are practically always implemented as FOSS.
Example of cryptocurrencies are Bitcoin, Monero or Dogecoin.

The word crypto in crpytocurrency doesn't imply that the currency provides or protects "privacy" -- it
rather refers to the cryptographic algorithms used to make the currency work -- even though thanks to the
decentralization, anonymity and openness cryptocurrencies actually are mostly "privacy friendly" (up to the
points of being considered the currency of criminals).

LRS sees cryptocurrencies as not only unnecessary bullshit, but downright as an unethical technology
because money itself is unethical, plus the currencies based on proof of work waste not only human effort
but also enormous amount of electricity and computing power that could be spent in a better way. Keep in
mind that cryptocurrencies are a way of digitizing harmful concepts existing in society. Crypto is just an
immensely expensive game in which people try to fuck each other over money that have been stolen from
the people.

History

TODO

How It Works

Cryptocurrency is build on top of so called blockchain -- a kind structure that holds records of transactions
(exchanges of money or "coins", as called in the crypto world). Blockchain is a data structure serving as a
database of the system. As its name suggests, it consists of blocks. Each block contains various data, most
important of which are performed transactions (e.g. "A sent 1 coin to B"), and each block points to a previous
one (forming a linked list). As new transactions are made, new blocks are created and appended at the end
of the blockchain.

But where is the blockchain stored? It is not on a single computer; many computers participating in the
system have their own copy of the blockchain and they share it together (similarly to how people share files
via torrents).

But how do we know which one is the "official" blockchain? Can't just people start forging information in the
blockchain and then distribute the fake blockchains? Isn't there a chaos if there are so many copies? Well

How It Works LRS Wiki 206/895

yes, it would be messy -- that's why we need a consensus of the participants on which blockchain is the real
one. And there are a few algorithms to ensure the consensus. Basically people can't just spam add new
blocks, a new block to be added needs to be validated via some process (which depends on the specific
algorithm) in order to be accepted by others. Two main algorithms for this are:

¢ proof of work: For a block to be confirmed it has to have a specific cryptographic puzzle solved, e.g. it
may need to have appended some string that makes the block's hash some predetermined value.
Participants try to solve this puzzle: finding the string is difficult and has to be done by brute force
(which wastes electricity and makes this method controversial). Once someone finds a solution, the
block is confirmed and the solver gets a reward in coin -- this is therefore called mining.

¢ proof of stake: This methods tries to waste less energy by not solving cryptographics puzzles but
rather having some chosen participants validate/confirm the blocks. Basically participants can give
some of their money at stake which then gives them a chance (proportional to the amount of money
put at stake) to be chosen as validators. A validator is then chosen at random who will check the
transactions and sign the block. For this they will get a small reward in coins. If they try to confirm
fraudulent transactions (e.g. money sent from people without any money), the network will punish
them by taking away the money they put at stake (so there is a financial motivation to not "cheat").

Can't people just forge transactions, e.g. by sending out a record that says someone else sent them money?
This can be easily prevented by digitally signing the transactions, i.e. if there is e.g. a transaction "A sends 1
coint to B", it has to be signed by A to confirm that A really intended to send the money. But can't someone
just copy-paste someone else's already signed transactions and try to perform them multiple times? This can
also be prevented by e.g. numbering the transactions, i.e. recording something like "A sent 1 coin to B as his
1st transaction”.

But where are one's coins actually stored? They're not explicitly stored anywhere; the amount of coins any
participant has is deduced from the list of transactions, i.e. if it is known someone joined the network with 0O
coins and there is a record of someone else sending him 1 coin, it is clear he now has 1 coin. For end users
there are so called wallets which to them appear to store their coins, but a wallet is in fact just the set of
cryptographic keys needed to perform transactions.

But why is blockchain even needed? Can't we just have a list of signed transactions without any blocks? Well,
blockchain is designed to ensure coherency and the above mentioned consensus.

c_sharp

C Sharp

C# is supposed to be a "programming language" but it's just some capitalist shit by Micro$oft that's
supposed to give it some kind of monopoly. Really it's not even worth writing about. It's like Java but worse.
I'm tired, DO NOT USE THIS PSEUDOSHIT. Learn C.

CSss

CSS

{ Check out our cool CSS styles in the wiki consoomer edition. ~drummyfish }

Cascading Style Sheets (CSS, cascading because of the possible style hierarchy) is a computer language for
styling documents (i.e. defining their visual appearance), used mainly on the web for giving websites (HTML
documents) their look. The language is standardized by W3C (the consortium established for making such
standards). CSS is NOT a programming language, it's merely a language that defines attributes of visual
presentation such as "headings should use this font" or "background should have this color"; it is one of the
three main languages a website is written in: HTML (for writing the document), CSS (for giving the document
a specific look) and JavaScript (programming language for the website's scripts). As of 2024 the latest CSS
specification is version 2.1 from 2016, version 3 is being worked on.

CSS LRS Wiki 207/895

A website is not required to have a CSS style, without it it will just have the plain default look (which is mostly
good enough for communicating any information, but won't impress normies), though only boomers and
hardcore minimalists nowadays have websites without any CSS at all (and we applaud them for such
minimalism). Similarly a single HTML website may use several styles or allow switching between them -- this
is thanks to the fact that the style is completely separate from the underlying document (you can in theory
take any document's style and apply it to any other document) AND thanks to the overriding rules that say
which style will take precedence over which (based on which one is more specific etc.) -- using multiple style
sheets at once creates the "cascades" the name refers to. In theory a web browser may even allow the user
to apply his own CSS style to given website (e.g. a half blind guy may apply style with big font, someone
reading in dark will apply "dark mode" style and so on), though for some reason browsers don't really do this
(well, it seems like the original intent of being able to do good things like this was reworked by capitalists
that rather see CSS more as a tool to apply more marketing styling and, of course, a capitalist won't want the
user to change how his site looks because he might for example hide ads or annoying flashing buttons the
capitalist paid hard money for).

Back in the boomer web days -- basically before the glorious year 2000 -- there was no CSS. Well, it was
around, but support was poor and no one used it (or needed it for that matter). People cared more for
sharing information than pimping muh graphics. Sometimes people needed to control the look of their
website to some degree though, for example in an image gallery it's good to have thumbnail sizes the same,
so HTML itself included some simple things to manipulate the looks (e.g. the width property in the img tag).
People also did hacks such as raping tables or spamming the
 tags or using ASCII art to somehow
force displaying something how they wanted it. However as corporations started to invade the web, they
naturally wanted more consumerism, flashing lights and brainwas... ummm... marketing. They wanted to
redefine the web from "collection of interlinked documents" or a "global database" to something more like
"virtual billboard space" or maybe "gigantic electronic shopping center"”, which indeed they did. So they
supported more work on CSS, more browsers started to support it and normies with blogs jumped on the
train too, so CSS just became standard. On one hand CSS allows nice things, you can restyle your whole
website with a single line change, but it is still bloat, so beware, use it wisely (or rather don't use it -- you can
never go wrong with that).

Correct, LRS approved attitude towards this piece of bloat: as a minimalist should you avoid CSS like
the devil and never use it? Usual LRS recommendations apply but, just in case, let's reiterate. Use your brain,
maximize good, minimize damage, just make it so that no one can ever say "oh no, | wish this site didn't
have CSS". You CAN use CSS on your site, but it mustn't become any burden, only something optional that
will make life better for those using a browser supporting CSS, i.e. your site MUSTN'T RELY on CSS, CSS
mustn't be its dependency, the site has to work perfectly fine without it (remember that many browsers,
especially the minimalist ones not under any corporation's control, don't even support CSS), the site must
not be crippled without a style, i.e. firstly design your site without CSS and only add CSS as an optional
improvement. Do not make your HTML bow to CSS, i.e. don't let CSS make you add tons of divs and classes,
make HTML first and then make CSS bow to the HTML. Light CSS is better than heavy one. If you have a
single page, embed CSS right into it (KISS, site is self contained and browser doesn't have to download extra
files for your site) and make it short to save bandwidth on downloading your site. Don't use heavy CSS
features like animation, blurs, color transitions or wild repositioning, save the CPU, save the planet (:D).
Etcetc.

TODO: more more more

How It Works

The CSS style can be put into three places:

e separate file (external CSS): Here the style is written in its own file with .css extension and any
HTML file wanting to use the style links to this file (with link tag inside head). This is good if you have
multiple HTML files (i.e. a whole website) that use the same style.

e inside the HTML file itself (internal CSS): The style is written right inside the same file as the HTML
document, between style tags in head, so it's all nicely self contained. This is good if the style is used
only by this one HTML document (e.g. you have a single webpage or some special page that just has
its own style).

e inside HTML tags (inline CSS): Style can be specified also as HTML tag attributes (the style
attribute), but this is discouraged as it intermixes HTML and CSS, something CSS wants to avoid.

CSS LRS Wiki 208/895

The style itself is quite simple, it's just a list of styling rules, each one in format:

selectors

{
style

}

Here selectors says which elements the rule applies to and style defines the visual attributes we want to
define. For example

p

{
color: blue;
font-size: 20px;

}
hl, h2, h3
{
color: red;
}

Specifies two rules. One says that all p tags (paragraphs) should have blue text color and font that's 20 pixels
tall. The second rule says that h1, h2 and h3 tags (headings) should have red text color. Pretty simple, no?

Tho it can get more complex, especially when you start positioning and aligning things -- it takes a while to
learn how this really works, but in the end it's no rocket science.

TODO: moar

CSS Gore And Pissing People Off

A user running bloatbrowser that implements CSS and has it turned on by default is openly inviting you to
freely remotely manipulate what his computer is showing to him, so let's take this opportunity to do some
lighthearted trolling :) Here are some possible approaches:

CSS

e cursor: Change or even hide the mouse cursor :D You can set it to none (hide), progress (make the
user think something's loading indefinitely, see how long it takes for him to realize), wait, col-resize
or even specific image with url(...).

e Make the site work only without CSS :D For example: body * { display: none; } body:before {
content: "This site only works without CSS." }.

¢ CSS can do animation! This can be used to induce seizures. E.g.: @keyframes lul { 0% {
background-color: red; } 100% { background-color: green; } } body { animation-name:
lul; animation-duration: 0.1s; animation-iteration-count: infinite; }.

* Animate <body> size so that the scroll bars keep resizing.

ea:hover { display: none; }: Makes links disappear when they're pointed at with the cursor :D Can
also be used for buttons etc.

e Make some huge clusterfuck of divs that get arranged in some intricate way, then make each div
change its size with :hover, or better yet use transform to rotate or skew it, triggering a spectacular
domino effect. You have to make it so that if one div reshapes on mouse over, another one gets under
the cursor, triggering reshape of that one, which pushes another one under the cursor etc.

¢ Alternative to the previous: make one huge ass div covering the whole screen and make it resize to
1x1 pixels on :hover, this will cause some vomit inducing blinking whenever mouse is moved.

e Use animation to very slowly alter the site, e.g. keep making text more and more transparent, so that
it can't be noticed immediately but will become apparent after having the site open for 15 minutes, or
maybe just have the site normal but after 10 minutes just immediately rotate it 180 degrees, the user
will be like WTF :D or maybe instead of this after 10 minutes just replace the site with some porn
image -- there is a chance someone will open the site, then leave the computer for a while, leaving
the innocent site open but in the meanwhile it will change to porn and suddenly he will look like the
biggest pervert :D

¢ TODO: some shit that makes CPU burn aka bitcoin miner without bitcoin

¢ TODO: make the page 1 light year long or something

¢ TODO: more

LRS Wiki 209/895

c_tutorial

C Tutorial

{ Constant work in progress, mostly done but may still have some bugs. ~drummyfish }
This is a relatively quick C tutorial.

You should probably how at least some basic awareness of essential programming concepts before reading
this (what's a programming language, source code, command line etc.). If you're as far as already somewhat
knowing another language, this should be pretty easy to understand.

This tutorial focuses on teaching pure C, i.e. mostly just command line text-only programs. There is a
small bonus that shows some very basics of doing graphics programming at the end, but bear in mind it's
inevitable to learn step by step, as much as you want to start programming graphical games, you first HAVE
TO learn the language itself well. Don't rush it. Trust this advice, it is sincere.

If you do two chapters a day (should take like half and hour), in a week you'll know some basic C.
Potentially supplemental articles to this tutorial are:

oC

e algorithm

e programming tips

e programming style

e debuggin

e exercises

o C pitfalls

e memory management
e optimization

[]

About C And Programming
Cis

¢ A programming language, i.e. a language that lets you express algorithms.

e Compiled language (as opposed to interpreted), i.e. you have to compile the code you write (with
compiler) in order to obtain a native executable program (a binary file that you can run directly).

¢ Extremely fast and efficient.

¢ Very widely supported and portable to almost anything.

e Low level, i.e. there is relatively little abstraction and not many comfortable built-in functionality
such as garbage collection, you have to write many things yourself, you will deal with pointers,
endianness etc.

¢ Imperative (based on sequences of commands), without object oriented programming.

¢ Considered hard, but in certain ways it's simple, it lacks bloat and bullshit of "modern" languages
which is an essential thing. It will take long to learn (don't worry, not nearly as long as learning a
foreign language) but it's the most basic thing you should know if you want to create good software.
You won't regret.

¢ Not holding your hand, i.e. you may very easily "shoot yourself in your foot" and crash your
program. This is the price for the language's power.

¢ Very old, well established and tested by time.

e Recommended by us for serious programs.

If you come from a language like Python or JavaScript, you may be shocked that C doesn't come with its own

package manager, debugger or build system, it doesn't have modules, generics, garabage collection, OOP,
hashmaps, dynamic lists, type inference and similar "modern" features. When you truly get into C, you'll find
it's a good thing.

C Tutorial LRS Wiki 210/895

Programming in C works like this:

1. You write a C source code into a file.

2. You compile the file with a C compiler such as gcc (which is just a program that turns source code into
a runnable program). This gives you the executable program.

3. You run the program, test it, see how it works and potentially get back to modifying the source code
(step 1).

So, for writing the source code you'll need a text editor; any plain text editor will do but you should use some
that can highlight C syntax -- this helps very much when programming and is practically a necessity. Ideal
editor is vim but it's a bit difficult to learn so you can use something as simple as Gedit or Geany. We do NOT
recommend using huge programming IDEs such as "VS Code" and whatnot. You definitely can NOT use an
advanced document editor that works with rich text such as LibreOffice or that shit from Micro$oft, this won't
work because it's not plain text.

Next you'll need a C compiler, the program that will turn your source code into a runnable program. We'll use
the most commonly used one called gcc (you can try different ones such as clang or tcc if you want). If
you're on a Unix-like system such as GNU/Linux (which you probably should), gcc is probably already
installed. Open up a terminal and write gcc to see if it's installed -- if not, then install it (e.g. with sudo apt
install build-essential if you're on a Debian-based system).

If you're extremely lazy, there are online web C compilers that work in a web browser (find them with a
search engine). You can use these for quick experiments but note there are some limitations (e.g. not being
able to work with files), and you should definitely know how to compile programs yourself.

Last thing: there are multiple standards of C. Here we will be covering C99, but this likely doesn't have to
bother you at this point.

First Program

Let's quickly try to compile a tiny program to test everything and see how everything works in practice.
Open your text editor and paste this code:

/* simple C program! */

#include <stdio.h> // include IO library

int main(void)
{
puts("It works.");

return 0;

}
Save this file and name it program. c. Then open a terminal emulator (or an equivalent command line
interface), locate yourself into the directory where you saved the file (e.g. cd somedirectory) and compile
the program with the following command:
gcc -0 program program.c
The program should compile and the executable program should appear in the directory. You can run it with
./program
And you should see
It works.

written in the command line.

Now let's see what the source code means:

C Tutorial LRS Wiki 211/895

e /* simple C program! */is so called block comment, it does nothing, it's here only for the humans
that will read the source code. Such comments can be almost anywhere in the code. The comment
starts at /* and ends with */.

e // include IO library is another comment, but this is a line comment, it starts with // and ends
with the end of line.

e #include <stdio.h> tells the compiler we want to include a library named stdio (the weird syntax
will be explained in the future). This is a standard library with input output functions, we need it to be
able to use the function puts later on. We can include more libraries if we want to. These includes are
almost always at the very top of the source code.

eint main(void) is the start of the main program. What exactly this means will be explained later, for
now just remember there has to be this function named main in basically every program -- inside it
there are commands that will be executed when the program is run. Note that the curly brackets that
follow ({ and }) denote the block of code that belongs to this function, so we need to write our
commands between these brackets.

eputs("It works."); is a "command" for printing text strings to the command line (it's a command
from the stdio library included above). Why exactly this is written like this will be explained later, but
for now notice the following. The command starts with its name (puts, for put string), then there are
left and right brackets ((and)) between which there are arguments to the command, in our case
there is one, the text string "It works.". Text strings have to be put between quotes ("), otherwise
the compiler would think the words are other commands (the quotes are not part of the string itself,
they won't be printed out). The command is terminated by ; -- all "normal” commands in C have to
end with a semicolon.

e return 0; is another "command", it basically tells the operating system that everything was
terminated successfully (0 is a code for success). This command is an exception in that it doesn't
have to have brackets ((and)). This doesn't have to bother us too much now, let's just remember
this will always be the last command in our program.

Also notice how the source code is formatted, e.g. the indentation of code within the { and } brackets. White
characters (spaces, new lines, tabs) are ignored by the compiler so we can theoretically write our program on
a single line, but that would be unreadable. We use indentation, spaces and empty lines to format the code
to be well readable.

To sum up let's see a general structure of a typical C program. You can just copy paste this for any new
program and then just start writing commands in the main function.

#include <stdio.h> // include the I/0 library
// more libraries can be included here

int main(void)
// write commands here

return 0; // always the last command

}

Variables, Arithmetic, Data Types

Programming is a lot like mathematics, we compute equations and transform numerical values into other
values. You probably know in mathematics we use variables such as x or y to denote numerical values that
can change (hence variables). In programming we also use variables -- here variable is a place in memory
which has a name (and in this place there will be stored a value that can change over time).

We can create variables named x, y, myVariable or score and then store specific values (for now let's only
consider numbers) into them. We can read from and write to these variables at any time. These variables
physically reside in RAM, but we don't really care where exactly (at which address) they are located -- this is
e.g. similar to houses, in common talk we normally say things like John's house or the pet store instead of
house with address 3225.

Variable names can't start with a digit (and they can't be any of the keywords reserved by C). By convention

they also shouldn't be all uppercase or start with uppercase (these are normally used for other things).
Normally we name variables like this: myVariable or my variable (pick one style, don't mix them).

C Tutorial LRS Wiki 212/895

In C as in other languages each variable has a certain data type; that is each variable has associated an
information of what kind of data is stored in it. This can be e.qg. a whole number, fraction, a text character,
text string etc. Data types are a more complex topic that will be discussed later, for now we'll start with the
most basic one, the integer type, in C called int. An int variable can store whole numbers in the range of
at least -32768 to 32767 (but usually much more).

Let's see an example.

#include <stdio.h>

int main(void)
{

int myVariable;
myVariable = 5;
printf("%d\n",myVariable);
myVariable = 8;

printf("sd\n",myVariable);
}

e int myVariable; is so called variable declaration, it tells the compiler we are creating a new
variable with the name myVariable and data type int. Variables can be created almost anywhere in
the code (even outside the main function) but that's a topic for later.

emyVariable = 5; is so called variable assignment, it stores a value 5 into variable named
myVariable. IMPORTANT NOTE: the = does NOT signify mathematical equality but an assignment
(equality in C is written as ==); when compiler encounters =, it simply takes the value on the right of it
and writes it to the variable on the left side of it. Sometimes people confuse assignment with an
equation that the compiler solves -- this is NOT the case, assignment is much more simple, it simply
writes a value into variable. So x = x + 1; is a valid command even though mathematically it would
be an equation without a solution.

eprintf("%sd\n",myVariable); prints out the value currently stored in myVariable. Don't get scared
by this complicated command, it will be explained later (once we learn about pointers). For now only
know this prints the variable content.

emyVariable = 8; assigns a new value to myVariable, overwriting the old.

eprintf("%d\n",myVariable); again prints the value in myVariable.

After compiling and running of the program you should see:

5
8

Last thing to learn is arithmetic operators. They're just normal math operators such as +, - and /. You can
use these along with brackets ((and)) to create expressions. Expressions can contain variables and can
themselves be used in many places where variables can be used (but not everywhere, e.g. on the left side of
variable assignment, that would make no sense). E.g.:

#include <stdio.h>

int main(void)
{
int heightCm 175;
int weightKg = 75;
int bmi = (weightKg * 10000) / (heightCm * heightCm);

printf("%d\n",bmi);
}

calculates and prints your BMI (body mass index).

Let's quickly mention how you can read and write values in C so that you can begin to experiment with your
own small programs. You don't have to understand the following syntax as of yet, it will be explained later,

C Tutorial LRS Wiki 213/895

now simply copy-paste the commands:

e puts("hello");: Prints a text string with newline.

eprintf("hello");: Same as above but without newline.

eprintf("%sd\n",x);: Prints the value of variable x with newline.

eprintf("%sd ");: Same as above but without a newline.

escanf("%d",&x);: Read a number from input to the variable x. Note there has to be & in front of x.

Branches And Loops (If, While, For)

When creating algorithms, it's not enough to just write linear sequences of commands. Two things (called
control structures) are very important to have in addition:

¢ branches: Conditionally executing or skipping certain commands (e.qg. if a user enters password we
want to either log him in if the password was correct or write error if the password was incorrect). This
is informally known as "if-then-else".

¢ loops (also called iteration): Repeating certain commands given number of times or as long as some
condition holds (e.g. when searching a text we repeatedly compare words one by one to the searched
word until a match is found or end of text is reached).

Let's start with branches. In C the command for a branch is if. E.g.:

if (x > 10)
puts("X is greater than 10.");

The syntax is given, we start with if, then brackets ((and)) follow inside which there is a condition, then a
command or a block of multiple commands (inside { and }) follow. If the condition in brackets holds, the
command (or block of commands) gets executed, otherwise it is skipped.

Optionally there may be an else branch which is gets executed only if the condition does NOT hold. It is
denoted with the else keyword which is again followed by a command or a block of multiple commands.
Branching may also be nested, i.e. branches may be inside other branches. For example:

if (x > 10)

puts("X is greater than 10.");
else
{

puts("X is not greater than 10.");

if (x < 5)
puts("And it is also smaller than 5.");
}

So if x is equal e.g. 3, the output will be:

X is not greater than 10.
And it is also smaller than 5.

About conditions in C: a condition is just an expression (variables/functions along with arithmetic
operators). The expression is evaluated (computed) and the number that is obtained is interpreted as true or
false like this: in C O (zero) means false, 1 (and everything else) means true. Even comparison
operators like < and > are technically arithmetic, they compare numbers and yield either 1 or 0. Some
operators commonly used in conditions are:

¢ == (equals): yields 1 if the operands are equal, otherwise 0.

¢ = (not equal): yields 1 if the operands are NOT equal, otherwise 0.

¢ < (less than): yields 1 if the first operand is smaller than the second, otherwise 0.
e <=: yields 1 if the first operand is smaller or equal to the second, otherwise 0.

¢ && (logical AND): yields 1 if both operands are non-0, otherwise 0.

¢ || (logical OR): yields 1 if at least one operand is hon-0, otherwise 0.

¢ ! (logical NOT): yields 1 if the operand is 0, otherwise 0.

C Tutorial LRS Wiki 214/895

E.g. an if statement starting as if (x == || x == 10) will be true if x is either 5 or 10.

Next we have loops. There are multiple kinds of loops even though in theory it is enough to only have one
kind of loop (there are multiple types out of convenience). The loops in C are:

e while: Loop with condition at the beginning.

¢ do while: Loop with condition at the end, not used so often so we'll ignore this one.

e for: Loop executed a fixed number of times. This is a very common case, that's why there is a special
loop for it.

The while loop is used when we want to repeat something without knowing in advance how many times we'll
repeat it (e.g. searching a word in text). It starts with the while keyword, is followed by brackets with a
condition inside (same as with branches) and finally a command or a block of commands to be looped. For
instance:

while (x > y) // as long as x is greater than y
printf("%d %d\n",x,y); // prints x and y

X

y
}

x - 1; // decrease x by 1
y * 2; // double y

puts("The loop ended.");
If x and y were to be equal 100 and 20 (respectively) before the loop is encountered, the output would be:

100 20
99 40
98 60
97 80
The loop ended.

The for loop is executed a fixed number of time, i.e. we use it when we know in advance how many time we
want to repeat our commands. The syntax is a bit more complicated: it starts with the keywords for, then
brackets ((and)) follow and then the command or a block of commands to be looped. The inside of the
brackets consists of an initialization, condition and action separated by semicolon (;) -- don't worry, it is
enough to just remember the structure. A for loop may look like this:

puts("Counting until 5...");

for (int 1 = 0; 1 < 5; ++1i)
printf("sd\n",1i); // prints i

int i = 0 creates a new temporary variable named i (name normally used by convention) which is used as
a counter, i.e. this variable starts at 0 and increases with each iteration (cycle), and it can be used inside
the loop body (the repeated commands). i < 5 says the loop continues to repeat as long as i is smaller than
5 and ++1 says that i is to be increased by 1 after each iteration (++1 is basically just a shorthand fori = i
+ 1). The above code outputs:

Counting until 5...

P WNRERO

IMPORTANT NOTE: in programming we count from 0O, not from 1 (this is convenient e.g. in regards to
pointers). So if we count to 5, we get 0, 1, 2, 3, 4. This is why 1 starts with value 0 and the end condition is 1
< 5(noti <= 5).

Generally if we want to repeat the for loop N times, the formatis for (int 1 = 0; 1 < N; ++i).

C Tutorial LRS Wiki 215/895

Any loop can be exited at any time with a special command called break. This is often used with so called
infinite loop, a while loop that has 1 as a condition; recall that 1 means true, i.e. the loop condition always
holds and the loop never ends. break allows us to place conditions in the middle of the loop and into multiple
places. E.g.:

while (1) // infinite loop

{
X =x - 1;
if (x == 0)
break; // this exits the loop!
y=y/X;
}

The code above places a condition in the middle of an infinite loop to prevent division by zeroiny =y / x.

Again, loops can be nested (we may have loops inside loops) and also loops can contain branches and vice
versa.

Simple Game: Guess A Number

With what we've learned so far we can already make a simple game: guess a number. The computer thinks a
random number in range 0 to 9 and the user has to guess it. The source code is following.

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main(void)
t srand(clock()); // random seed
while (1) // infinite loop
{ int randomNumber = rand() % 10;
puts("I think a number. What is it?");

int guess;

scanf("%d",&guess); // read the guess

getchar();

if (guess == randomNumber)
puts("You guessed it!");

else

printf("Wrong. The number was %d.\n", randomNumber);
puts("Play on? [y/n]l");
char answer;

scanf("%c",&answer); // read the answer

if (answer == 'n')
break;
}
puts("Bye.");

return 0; // return success, always here

}

e#include <stdlib.h>, #include <time.h>: we're including additional libraries because we need
some specific functions from them (rand, srand, clock).

C Tutorial LRS Wiki 216/895

esrand(clock());: don't mind this line too much, its purpose is to seed a pseudorandom number
generator. Without doing this the game would always generate the same sequence of random
numbers when run again.

ewhile (1) is an infinite game loop -- it runs over and over, in each cycle we perform one game round.
The loop can be exited with the break statement later on (if the user answers he doesn't want to
continue playing).

eint randomNumber = rand() % 10;: this line declares a variable named randomNumber and
immediately assigns a value to it. The value is a random number from 0 to 9. This is achieved with a
function rand (from the above included stdlib library) which returns a random number, and with the
modulo (remainder after division) arithmetic operator (%) which ensures the number is in the correct
range (less than 10).

e int guess; creates another variable in which we'll store the user's guessed number.

escanf("%d",&guess); reads a number from the input to the variable named guess. Again, don't be
bothered by the complicated structure of this command, for now just accept that this is how it's done.

egetchar();: don't mind this line, it just discards a newline character read from the input.

eif (guess == randomNumber) ...:thisis a branch which checks if the user guess is equal to the
generated random number. If so, a success message is printed out. If not, a fail message is printed
out along with the secret number. Note we use the puts function for the first message as it only prints
a text sting, while for the latter message we have to use printf, a more complex function, because
that requires inserting a number into the printed string. More on these functions later.

e char answer; declares a variable to store user's answer to a question of whether to play on. It is of
char data type which can store a single text character.

escanf("%c",&answer); reads a single character from input to the answer variable.

eif (answer == 'n') break; is a branch that exits the infinite loop with break statement if the
answer entered was n (no).

Functions (Subprograms)

Functions are extremely important, no program besides the most primitive ones can be made without them
(well, in theory any program can be created without functions, but in practice such programs would be
extremely complicated and unreadable).

Function is a subprogram (in other languages functions are also called procedures or subroutines), i.e. it
is code that solves some smaller subproblem that you can repeatedly invoke, for instance you may have a
function for computing a square root, for encrypting data or for playing a sound from speakers. We have
already met functions such as puts, printf or rand.

Functions are similar to but NOT the same as mathematical functions. Mathematical function (simply
put) takes a number as input and outputs another number computed from the input number, and this output
number depends only on the input number and nothing else. C functions can do this too but they can also do
additional things such as modify variables in other parts of the program or make the computer do something
(such as play a sound or display something on the screen) -- these are called side effects; things done
besides computing an output number from an input number. For distinction mathematical functions are
called pure functions and functions with side effects are called non-pure.

Why are function so important? Firstly they help us divide a big problem into small subproblems and
make the code better organized and readable, but mainly they help us respect the DRY (Don't Repeat
Yourself) principle -- this is extremely important in programming. Imagine you need to solve a guadratic
equation in several parts of your program; you do NOT want to solve it in each place separately, you want to
make a function that solves a quadratic equation and then only invoke (call) that function anywhere you
need to solve your quadratic equation. This firstly saves space (source code will be shorter and compiled
program will be smaller), but it also makes your program manageable and eliminates bugs -- imagine you
find a better (e.g. faster) way to solving quadratic equations; without functions you'd have to go through the
whole code and change the algorithm in each place separately which is impractical and increases the chance
of making errors. With functions you only change the code in one place (in the function) and in any place
where your code invokes (calls) this function the new better and updated version of the function will be used.

Besides writing programs that can be directly executed programmers write libraries -- collections of
functions that can be used in other projects. We have already seen libraries such as stdio, standard
input/output library, a standard (official, bundled with every C compiler) library for input/output (reading and

C Tutorial LRS Wiki 217/895

printing values); stdio contains functions such as puts which is used to printing out text strings. Examples of
other libraries are the standard math library containing function for e.g. computing sine, or SDL, a 3rd party

multimedia library for such things as drawing to screen, playing sounds and handling keyboard and mouse
input.

Let's see a simple example of a function that writes out a temperature in degrees of Celsius as well as in
Kelvin:

#include <stdio.h>

void writeTemperature(int celsius)

{

int kelvin =
printf("%sd C
}

celsius + 273;
(%d K)\n",celsius,kelvin);

int main(void)

{
writeTemperature(-50);
writeTemperature(0);
writeTemperature(100);

return 0;

}
The output is

-50 C (223 K)
0 C (273 K)
100 C (373 K)

Now imagine we decide we also want our temperatures in Fahrenheit. We can simply edit the code in
writeTemperature function and the program will automatically be writing temperatures in the new way.

Let's see how to create and invoke functions. Creating a function in code is done between inclusion of
libraries and the main function, and we formally call this defining a function. The function definition
format is following:

RETURN_TYPE FUNCTION NAME(FUNCTION PARAMETERS)
{

}

FUNCTION BODY

* RETURN_TYPE is the data type the function returns. A function may or may not return a certain value,
just as the pure mathematical function do. This may for example be int, if the function returns an
integer number. If the function doesn't return anything, this type is void.

¢ FUNCTION NAME is the name of the function, it follows the same rules as the names for variables.

¢ FUNCTION PARAMETERS specifies the input values of the function. The function can take any number of
parameters (e.g. a function playBeep may take 0 arguments, sine function takes 1, logarithm may
take two etc.). This list is comma-separated and each item consists of the parameter data type and
name. If there are 0 parameters, there should be the word void inside the brackets, but compilers
tolerate just having empty brackets.

¢ FUNCTION BODY are the commands executed by the function, just as we know them from the main
function.

Let's see another function:

#include <stdio.h>
int power(int x, int n)
¢ int result = 1;
for (int i = 0; i < n; ++i) // repeat n times
result = result * x;

C Tutorial LRS Wiki 218/895

return result;

}

int main(void)
{
for (int 1 = 0; i < 5; ++1i)
{
int power0OfTwo = power(2,1i);
printf("sd\n",power0fTwo);
b

return 0;

}

The output is:

=00 N

6

The function power takes two parameters: x and n, and returns x raised to the ns power. Note that unlike the
first function we saw here the return type is int because this function does return a value. Notice the
command return -- it is a special command that causes the function to terminate and return a specific
value. In functions that return a value (their return type is not void) there has to be a return command. In
function that return nothing there may or may not be one, and if there is, it has no value after it (return;);

Let's focus on how we invoke the function -- in programming we say we call the function. The function call
in our code is power(2,1). If a function returns a value (return type is not void), its function call can be used
in any expression, i.e. almost anywhere where we can use a variable or a numerical value -- just imagine the
function computes a return value and this value is substituted to the place where we call the function.
For example we can imagine the expression power(3,1) + power(3,0) assimply 3 + 1.

If a function returns nothing (return type is void), it can't be used in expressions, it is used "by itself"; e.qg.
playBeep();. (Function that do return a value can also be used like this -- their return value is in this case
simply ignored.)

We call a function by writing its name (power), then adding brackets ((and)) and inside them we put
arguments -- specific values that will substitute the corresponding parameters inside the function (here x
will take the value 2 and n will take the current value of i). If the function takes no parameters (the function
parameter list is void), we simply put nothing inside the brackets (e.g. playBeep(););

Here comes the nice thing: we can nest function calls. For example we can write x =
power(3,power(2,1)); which will result in assigning the variable x the value of 9. Functions can also call
other functions (even themselves, see recursion), but only those that have been defined before them in
the source code (this can be fixed with so called forward declarations).

Notice that the main function we always have in our programs is also a function definition. The definition of
this function is required for runnable programs, its name has to be main and it has to return int (an error
code where 0 means no error). It can also take parameters but more on that later.

These is the most basic knowledge to have about C functions. Let's see one more example with some
pecularities that aren't so important now, but will be later.

#include <stdio.h>

void writeFactors(int x) // writes divisors of x
printf("factors of %d:\n",x);
while (x > 1) // keep dividing x by its factors

for (int i = 2; i <= x; ++i) // search for a factor
if (x % 1 ==0) // i divides x without remainder?

C Tutorial LRS Wiki 219/895

printf(" %d\n",i); // i is a factor, write it
X =x / 1; // divide x by i
break; // exit the for loop

}
}

int readNumber(void)

{

int number;

puts("Please enter a number to factor (0 to quit).");
scanf("%d",&number);

return number;

}

int main(void)
while (1) // infinite loop
{

int number

readNumber(); // <- function call

if (number == 0) // 0 means quit
break;

writeFactors(number); // <- function call

}

return 0;

}

We have defined two functions: writeFactors and readNumber. writeFactors return no values but it has
side effects (print text to the command line). readNumber takes no parameters but return a value; it prompts
the user to enter a value and returns the read value.

Notice that inside writeFactors we modify its parameter x inside the function body -- this is okay, it won't
affect the argument that was passed to this function (the number variable inside the main function won't
change after this function call). x can be seen as a local variable of the function, i.e. a variable that's
created inside this function and can only be used inside it -- when writeFactors is called inside main, a new
local variable x is created inside writeFactors and the value of number is copied to it.

Another local variable is number -- it is a local variable both in main and in readNumber. Even though the
names are the same, these are two different variables, each one is local to its respective function (modifying
number inside readNumber won't affect number inside main and vice versa).

And a last thing: keep in mind that not every command you write in C program is a function call. E.g. control
structures (if, while, ...) and special commands (return, break, ...) are not function calls.

More Details (Globals, Switch, Float, Forward Decls, Program Arguments, ...)

We've skipped a lot of details and small tricks for simplicity. Let's go over some of them. Many of the
following things are so called syntactic sugar: convenient syntax shorthands for common operations.

Multiple variables can be defined and assigned like this:

intx=1,y =2, z;
The meaning should be clear, but let's mention that z doesn't generally have a defined value here -- it will
have a value but you don't know what it is (this may differ between different computers and platforms). See

undefined behavior.

The following is a shorthand for using operators:

C Tutorial LRS Wiki 220/895

X += 1; // same as: X = X + 1;

X -= 10; // same as: X = X - 1;

X *= x + 1; // same as: x = X * (x + 1);
X++; // same as: X = X + 1;

X--; // same as: X = X - 1;

// etc.

The last two constructs are called incrementing and decrementing. This just means adding/subtracting 1.

In C there is a pretty unique operator called the ternary operator (ternary for having three operands). It
can be used in expressions just as any other operators such as + or -. Its format is:

CONDITION ? VALUE1l : VALUE2

It evaluates the CONDITION and if it's true (non-0), this whole expression will have the value of VALUEL,
otherwise its value will be VALUE2. It allows for not using so many ifs. For example instead of

if (x >= 10)
X -= 10;
else
x = 10;

we can write
X =x>10 ? x - 10 : 10;

Global variables: we can create variables even outside function bodies. Recall than variables inside
functions are called local; variables outside functions are called global -- they can basically be accessed from
anywhere and can sometimes be useful. For example:

#include <stdio.h>
#include <stdlib.h> // for rand()

int money = 0; // total money, global variable
void printMoney(void)
i printf("I currently have $%d.\n",money);
void playLottery(void)
{ puts("I'm playing lottery.");

money -= 10; // price of lottery ticket

if (rand() % 5) // 1 in 5 chance

{
money += 100;
puts("I've won!");
b
else

puts("I've lost!");

printMoney();
}

void work(void)

{
puts("I'm going to work :(");
money += 200; // salary

printMoney();
}

int main()

{

work();

C Tutorial LRS Wiki 221/895

playLottery();
work();
playLottery();

return 0;

}

In C programs you may encounter a switch statement -- it is a control structure similar to a branch if which
can have more than two branches. It looks like this:

switch (x)
{
case 0: puts("X is zero. Don't divide by it."); break;
case 69: puts("X is 69, haha."); break;
case 42: puts("X is 42, the answer to everything."); break;
default: printf("I don't know anything about X."); break;
}

Switch can only compare exact values, it can't e.g. check if a value is greater than something. Each branch
starts with the keyword case, then the match value follows, then there is a colon (:) and the branch
commands follow. IMPORTANT: there has to be the break; statement at the end of each case branch (we
won't go into details). A special branch is the one starting with the word default that is executed if no case
label was matched.

Let's also mention some additional data types we can use in programs:

e char: A single text character such as 'a', 'G' or ' _'. We can assign characters as char ¢ = 'a'; (single
characters are enclosed in apostrophes similarly to how text strings are inside quotes). We can read a
character as ¢ = getchar(); and printit as putchar(c) ;. Special characters that can be used are \n
(newline) or \t (tab). Characters are in fact small numbers (usually with 256 possible values) and can
be used basically anywhere a number can be used (for example we can compare characters, e.g. if
(c < 'b') ...). Later we'll see characters are basic building blocks of text strings.

eunsigned int: Integer that can only take positive values or 0 (i.e. no negative values). It can store
higher positive values than normal int (which is called a signed int).

¢ long: Big integer, takes more memory but can store number in the range of at least a few billion.

e float and double: Floating point number (double is bigger and more precise than float) -- an
approximation of real numbers, i.e. numbers with a fractional part such as 2.5 or 0.0001. You can
print these numbers as printf("%lf\n",x); and read them as scanf ("%f",&x) ;.

Here is a short example with the new data types:

#include <stdio.h>
int main(void)
{

char c;

float f;

puts("Enter character.");
¢ = getchar(); // read character

puts("Enter float.");
scanf ("%f",&f);

printf("Your character is :%c.\n",c);
printf("Your float is %lf\n",f);

float fSquared = f * f;
int wholePart = f; // this can be done

printf("It's square is %lf.\n",fSquared);
printf("It's whole part is %d.\n",wholePart);

return 0;

C Tutorial LRS Wiki 222/895

Notice mainly how we can assign a float value into the variable of int type (int wholePart = f;). This
can be done even the other way around and with many other types. C can do automatic type conversions
(casting), but of course, some information may be lost in this process (e.g. the fractional part).

In the section about functions we said a function can only call a function that has been defined before it in
the source code -- this is because the compiler read the file from start to finish and if you call a function that
hasn't been defined yet, it simply doesn't know what to call. But sometimes we need to call a function that
will be defined later, e.qg. in cases where two functions call each other (function A calls function B in its code
but function B also calls function A). For this there exist so called forward declarations -- a forward
declaration is informing that a function of certain name (and with certain parameters etc.) will be defined
later in the code. Forward declaration look the same as a function definition, but it doesn't have a body (the
part between { and }), instead it is terminated with a semicolon (;). Here is an example:

#include <stdio.h>
void printDecorated2(int x, int fancy); // forward declaration

void printDecoratedl(int x, int fancy)

{
putchar('~"');

if (fancy)

printDecorated2(x,0); // would be error without f. decl.
else

printf("sd",x);

putchar('~");
}

void printDecorated2(int x, int fancy)

{
putchar('>");

if (fancy)
printDecoratedl(x,0);
else
printf("%sd",x);

putchar('<"');

}

int main()

{
printDecorated1(10,1);
putchar('\n'); // newline
printDecorated2(20,1);

}

which prints

~>10<~
>~20~<

The functions printDecoratedl and printDecorated2 call each other, so this is the case when we have to
use a forward declaration of printDecorated2. Also note the condition if (fancy) which is the same thing
as if (fancy !'= 0) (imagine fancy being 1 and 0 and about what the condition evaluates to in each case).

And one more important thing: our program as a whole can be passed parameters when it's executed, which
inside the program we can access as so called command line arguments (also known as flags, switches
etc.). This is important especially under Unix operating systems where we run programs from command line
and where programs often work in non-interactive ways and are composed into bigger programs (similarly to
how we compose small C functions into one big program); command line arguments are similar to arguments
we pass to functions, they can inform our program to behave in certain way, for example to open a certain
config file at start, to run in fullscreen mode, to print help and so on. When we compile our programs with the
gcc compiler, e.qg. like gcc -0 myprogram myprogram.c, all the text after gcc are in fact arguments telling
gcc which program to compile, how to compile it, how to name the output and so on. To allow our program to

C Tutorial LRS Wiki 223/895

receive these arguments we add two parameters to the main function, one called argc (argument count) of
integer type, saying how many arguments we get, and another called argv (argument vector) of pointer to a
pointer to char type (please don't get scared), holding an array of strings (each argument will be of string
type). Operating system will automatically fill these arguments in when our program is started. Here is a
short example demonstrating this:

#include <stdio.h>

int main(int argc, char **argv)
{

puts("You passed these arguments:");

for (int i = 0; i < argc; ++i)
printf("- \"%s\"\n",argv[i]);

return 0;

}
If you compile this program and run it e.qg. like
./program hello these are "my arguments"
The program will output:

You passed these arguments:
- "./program"

- "hello"

- "these"

- "are"

- "my arguments"

Things to notice here are following: we passed 4 arguments but got 5 -- the first argument is the path of our
program itself, i.e. we will always get at least this argument. Then we also see that our arguments are
separated by spaces, but if we put them into double quotes (like the last one), it will become just one
argument, keeping the spaces (but not the quotes). For now this knowledge will suffice, you will most
definitely encounter command line arguments in real programs -- now you know what they are.

Header Files, Libraries, Compilation/Building

So far we've only been writing programs into a single source code file (such as program.c). More
complicated programs consist of multiple files and libraries -- we'll take a look at this now.

In C we normally deal with two types of source code files:

e .c files: These files contain so called implementation of algorithms, i.e. code that translates into
actual program instructions. These files are what's handed to the compiler.

¢ .h files, or header files: These files typically contain declarations such as constants and function
headers (but not their bodies, i.e. implementations).

When we have multiple source code files, we typically have pairs of .c and .h files. E.qg. if there is a library
called mathfunctions, it will consist of files mathfunctions.c and mathfunctions.h. The .h file will contain the
function headers (in the same manner as with forward declarations) and constants such as pi. The .c file will
then contain the implementations of all the functions declared in the .h file. But why do we do this?

Firstly .h files may serve as a nice documentation of the library for programmers: you can simply open the .h
file and see all the functions the library offers without having to skim over thousands of lines of code.
Secondly this is for how multiple source code files are compiled into a single executable program.

Suppose now we're compiling a single file named program.c as we've been doing until now. The compilation
consists of several steps:

1. The compiler reads the file program.c and makes sense of it.

C Tutorial LRS Wiki 224/895

2. It then creates an intermediate file called program.o. This is called an object file and is a binary
compiled file which however cannot yet be run because it is not linked -- in this code all memory
addresses are relative and it doesn't yet contain the code from external libraries (e.g. the code of
printf).

3. The compiler then runs a linker which takes the file program.o and the object files of libraries (such
as the stdio library) and it puts them all together into the final executable file called program. This is
called linking; the code from the libraries is copied to complete the code of our program and the
memory addresses are settled to some specific values.

So realize that when the compiler is compiling our program (program.c), which contains function such as
printf from a separate library, it doesn't have the code of these functions available -- this code is not in our
file. Recall that if we want to call a function, it must have been defined before and so in order for us to be
able to call printf, the compiler must know about it. This is why we include the stdio library at the top of our
source code with #include <stdio.h> -- this basically copy-pastes the content of the header file of the stdio
library to the top of our source code file. In this header there are forward declarations of functions such as
printf, so the compiler now knows about them (it knows their name, what they return and what parameters
they take) and we can call them.

Let's see a small example. We'll have the following files (all in the same directory).

library.h (the header file):

// Returns the square of n.
int square(int n);

library.c (the implementation file):

int square(int x)

{
// function implementation
return x * x;

}
program.c (main program):

#include <stdio.h>
#include "library.h"

int main(void)

{
int n = square(5);
printf("sd\n",n);

return 0;

}

NOTE: "library.h" here is between double quotes, unlike <stdio.h>. This just says we specify an absolute
path to the file as it's not in the directory where installed libraries go.

Now we will manually compile the library and the final program. First let's compile the library, in command
line run:

gcc -c -o library.o library.c

The -c flag tells the compiler to only compile the file, i.e. only generate the object (.0) file without trying to
link it. After this command a file library.o should appear. Next we compile the main program in the same
way:

gcc -c -0 program.o program.c

This will generate the file program.o. Note that during this process the compiler is working only with the
program.c file, it doesn't know the code of the function square, but it knows this function exists, what it

C Tutorial LRS Wiki 225/895

returns and what parameter it has thanks to us including the library header library.h with #include
"library.h" (quotes are used instead of < and > to tell the compiler to look for the files in the current
directory).

Now we have the file program.o in which the compiled main function resides and file library.o in which the
compiled function square resides. We need to link them together. This is done like this:

gcc -o program program.o library.o

For linking we don't need to use any special flag, the compiler knows that if we give it several .o files, it is
supposed to link them. The file program should appear that we can already run and it should print

25

This is the principle of compiling multiple C files (and it also allows for combining C with other languages).
This process is normally automated, but you should know how it works. The systems that automate this
action are called build systems, they are for example Make and Cmake. When using e.g. the Make system,
the whole codebase can be built with a single command make in the command line.

Some programmers simplify this whole process further so that they don't even need a build system, e.g. with
so called header-only libraries, but this is outside the scope of this tutorial.

As a bonus, let's see a few useful compiler flags:

e -01, -02, -03: Optimize for speed (higher number means better optimization). Adding -03 normally
instantly speeds up your program. This is recommended.

e -0s: Optimize for size, the same as above but the compiler will try to make as small executable as
possible.

e -Wall -Wextra -pedantic: The compiler will write more warnings and will be more strict. This can
help spot many bugs.

e -c: Compile only (generate object files, do not link).

¢ -g: Include debug symbols, this will be important for debugging.

Advanced Data Types And Variables (Structs, Arrays, Strings)

Until now we've encountered simple data types such as int, char or float. These identify values which can
take single atomic values (e.g. numbers or text characters). Such data types are called primitive types.

Above these there exist compound data types (also complex or structured) which are composed of
multiple primitive types. They are necessary for any advanced program.

The first compound type is a structure, or struct. It is a collection of several values of potentially different
data types (primitive or compound). The following code shows how a struc can be created and used.

#include <stdio.h>

typedef struct
{

char initial; // initial of name
int weightKg;
int heightCnm;

} Human;

int bmi(Human human)

{
return (human.weightKg * 10000) / (human.heightCm * human.heightCm);

}
int main(void)
{

Human carl;

carl.initial = 'C';

C Tutorial LRS Wiki 226/895

carl.weightKg = 100;
carl.heightCm = 180;
if (bmi(carl) > 25)

puts("Carl is fat.");

return 0;

}

The part of the code starting with typedef struct creates a new data type that we call Human (one
convention for data type names is to start them with an uppercase character). This data type is a structure
consisting of three members, one of type char and two of type int. Inside the main function we create a
variable carl which is of Human data type. Then we set the specific values -- we see that each member of the
struct can be accessed using the dot character (.), e.g. carl.weightKg; this can be used just as any other
variable. Then we see the type Human being used in the parameter list of the function bmi, just as any other
type would be used.

What is this good for? Why don't we just create global variables such as carl _initial, carl weightKg and
carl_heightCm? In this simple case it might work just as well, but in a more complex code this would be
burdening -- imagine we wanted to create 10 variables of type Human (john, becky, arnold, ...). We would
have to painstakingly create 30 variables (3 for each person), the function bmi would have to take two
parameters (height and weight) instead of one (human) and if we wanted to e.g. add more information about
every human (such as hairLength), we would have to manually create another 10 variables and add one
parameter to the function bmi, while with a struct we only add one member to the struct definition and
create more variables of type Human.

Structs can be nested. So you may see things such as
myHouse.groundFloor.livingRoom.ceilingHeight in C code.

Another extremely important compound type is array -- a sequence of items, all of which are of the same
data type. Each array is specified with its length (number of items) and the data type of the items. We can
have, for instance, an array of 10 ints, or an array of 235 Humans. The important thing is that we can index
the array, i.e. we access the individual items of the array by their position, and this position can be specified
with a variable. This allows for looping over array items and performing certain operations on each item.
Demonstration code follows:

#include <stdio.h>
#include <math.h> // for sqrt()

int main(void)
{
float vector[5];

vector[0] = 1;
vector[1l] = 2.5;
vector[2] = 0;
vector[3] = 1.1;
vector[4] = -405.054;

puts("The vector is:");

for (int 1 = 0; i < 5; ++1)
printf("slf ",vector[i]);

putchar('\n'); // newline

/* compute vector length with
pythagoren theorem: */

float sum = 0;

for (int 1 = 0; i < 5; ++1i)
sum += vector[i] * vector[i];

printf("Vector length is: %lf\n",sqrt(sum));

return 0;

C Tutorial LRS Wiki 227/895

}

We've included a new library called math.h so that we can use a function for square root (sqrt). (If you have
trouble compiling the code, add -1lm flag to the compile command.)

float vector[5]; is a declaration of an array of length 5 whose items are of type float. When compiler
sees this, it creates a continuous area in memory long enough to store 5 numbers of float type, the
numbers will reside here one after another.

After doing this, we can index the array with square brackets ([and]) like this: ARRAY NAME[INDEX] where
ARRAY NAME is the name of the array (here vector) and INDEX is an expression that evaluates to integer,
starting with O and going up to the vector length minus one (remember that programmers count from
zero). So the first item of the array is at index 0, the second at index 1 etc. The index can be a numeric
constant like 3, but also a variable or a whole expression such as x + 3 * myFunction(). Indexed array can
be used just like any other variable, you can assign to it, you can use it in expressions etc. This is seen in the
example. Trying to access an item beyond the array's bounds (e.g. vector[100]) will likely crash your
program.

Especially important are the parts of code staring with for (int 1 = 0; i < 5; ++1i): thisis an iteration
over the array. It's a very common pattern that we use whenever we need to perform some action with every
item of the array.

Arrays can also be multidimensional, but we won't bothered with that right now.

Why are arrays so important? They allow us to work with great number of data, not just a handful of numeric
variables. We can create an array of million structs and easily work with all of them thanks to indexing and
loops, this would be practically impossible without arrays. Imagine e.g. a game of chess; it would be very silly
to have 64 plain variables for each square of the board (squareAl, squareAz2, ..., squareH8), it would be
extremely difficult to work with such code. With an array we can represent the square as a single array, we
can iterate over all the squares easily etc.

One more thing to mention about arrays is how they can be passed to functions. A function can have as a
parameter an array of fixed or unknown length. There is also one exception with arrays as opposed to other
types: if a function has an array as parameter and the function modifies this array, the array
passed to the function (the argument) will be modified as well (we say that arrays are passed by
reference while other types are passed by value). We know this wasn't the case with other parameters such
as int -- for these the function makes a local copy that doesn't affect the argument passed to the function.
The following example shows what's been said:

#include <stdio.h>

// prints an int array of lengt 10
void printArraylO(int array[10])
{
for (int 1 = 0; i < 10; ++i)
printf("%sd ",array[i]);

}

// prints an int array of arbitrary lengt
void printArrayN(int array[], int n)

{

for (int 1 = 0; 1 < n; ++1)
printf("sd ",array[i]);
}

// fills an array with numbers 0, 1, 2, ...
void fillArrayN(int array[], int n)
{
for (int i
array[il]
}

0; 1 <n; ++i)
i;

int main(void)

{
int arraylQ[10];

C Tutorial LRS Wiki 228/895

int array20[20];

fillArrayN(arrayl0,10);
fillArrayN(array20,20);

printArraylO(arrayl0);
putchar('\n');
printArrayN(array20,20);

return 0;

}

The function printArrayl0 has a fixed length array as a parameter (int array[10]) while printArrayN
takes as a parameter an array of unknown length (int array[]) plus one additional parameter to specify
this length (so that the function knows how many items of the array it should print). The function
printArrayl0 is important because it shows how a function can modify an array: when we call
fillArrayN(arrayl0,10); in the main function, the array arrayl0 will be actually modified after when the
function finishes (it will be filled with numbers 0, 1, 2, ...). This can't be done with other data types (though
there is a trick involving pointers which we will learn later).

Now let's finally talk about text strings. We've already seen strings (such as "hello"), we know we can
print them, but what are they really? A string is a data type, and from C's point of view strings are nothing
but arrays of chars (text characters), i.e. sequences of chars in memory. In C every string has to end
with a O char -- this is NOT '0' (whose ASCII value is 48) but the direct value 0 (remember that chars are
really just numbers). The 0 char cannot be printed out, it is just a helper value to terminate strings. So to
store a string "hello" in memory we need an array of length at least 6 -- one for each character plus one for
the terminating 0. These types of string are called zero terminated strings (or C strings).

When we write a string such as "hello" in our source, the C compiler creates an array in memory for us and
fills it with characters 'h', 'e', 'l', 'l', '0', 0. In memory this may look like a sequence of numbers 104,
101, 108, 108 111, 0.

Why do we terminate strings with 0? Because functions that work with strings (such as puts or printf) don't
know what length the string is. We can call puts("abc"); or puts("abcdefghijk"); -- the string passed to
puts has different length in each case, and the function doesn't know this length. But thanks to these strings
ending with 0, the function can compute the length, simply by counting characters from the beginning until it
finds 0 (or more efficiently it simply prints characters until it finds 0).

The syntax that allows us to create strings with double quotes (") is just a helper (syntactic sugar); we can
create strings just as any other array, and we can work with them the same. Let's see an example:

#include <stdio.h>
int main(void)
char alphabet[27]; // 26 places for letters + 1 for temrinating 0

for (int 1 = 0; i < 26; ++i)
alphabet[i] = 'A' + i;

alphabet[26] = 0; // terminate the string
puts(alphabet);

return 0;

}

alphabet is an array of chars, i.e. a string. Its length is 27 because we need 26 places for letters and one
extra space for the terminating 0. Here it's important to remind ourselves that we count from 0, so the
alphabet can be indexed from 0 to 26, i.e. 26 is the last index we can use, doing alphabet[27] would be an
error! Next we fill the array with letters (see how we can treat chars as numbers and do 'A' + i). We iterate
while i < 26, i.e. we will fill all the places in the array up to the index 25 (including) and leave the last place
(with index 26) empty for the terminating 0. That we subsequently assign. And finally we print the string with
puts(alphabet) -- here note that there are no double quotes around alphabet because its a variable name.

C Tutorial LRS Wiki 229/895

Doing puts("alphabet") would cause the program to literally print out alphabet. Now the program outputs:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

In C there is a standard library for working with strings called string (#include <string.h>), it contains such
function as strlen for computing string length or strcmp for comparing strings.

One final example -- a creature generator -- will show all the three new data types in action:

#include <stdio.h>
#include <stdlib.h> // for rand()

typedef struct

{
char name[4]; // 3 letter name + 1 place for 0
int weightKg;
int legCount;

} Creature; // some weird creature

Creature creatures[100]; // global array of Creatures

void printCreature(Creature c)

{
printf("Creature named %s ",c.name); // %s prints a string
printf("(%sd kg, ",c.weightKg);
printf("sd legs)\n",c.legCount);

}

int main(void)
{

// generate random creatures:

for (int 1 = 0; i < 100; ++i)

{
Creature c;
c.name[0] = 'A' + (rand() % 26);
c.name[l] = 'a' + (rand() % 26);
c.name[2] = 'a' + (rand() % 26);
c.name[3] = 0; // terminate the string
c.weightkg = 1 + (rand() % 1000);
c.legCount =1 + (rand() % 10); // 1 to 10 legs

creatures[i] = c;

}
// print the creatures:

for (int 1 = 0; i < 100; ++i)
printCreature(creatures[i]);

return 0;

}
When run you will see a list of 100 randomly generated creatures which may start e.g. as:

Creature named Nwl (916 kg, 4 legs)
Creature named Bmg (650 kg, 2 l